В небе завтрашнего дня - [14]
Еще один двигатель-гибрид, тоже уже нашедший широкое применение в авиации, представляет собой как бы сочетание турбореактивного и турбовинтового двигателей. Если в турбореактивном двигателе вся тяга создается реактивной струей газов, а в турбовинтовом почти вся тяга — винтом (на долю струи в нем приходится очень небольшая часть тяги), то в их гибриде тяга распределяется примерно поровну между винтом и струей. Неудивительно, что и по своим свойствам гибрид оказывается промежуточным между обоими исходными двигателями.
Чтобы получить такой гибрид, обычный турбореактивный двигатель как бы помещают внутрь канала, в котором вращается многолопастный воздушный винт небольшого диаметра или даже несколько таких винтов, установленных один за другим. Подобный винт правильнее назвать, пожалуй, высоконапорным вентилятором. Этот вентилятор приводится во вращение турбиной турбореактивного двигателя — обычно для этого за турбиной устанавливается еще одно специальное турбинное колесо. Холодный воздух, отбрасываемый назад вентилятором, создает реактивную тягу так же, как и горячая струя выхлопных газов двигателя.
Такие двигатели получили название турбовентиляторных, или двухконтурных. Легко видеть, о каких двух контурах тут идет речь, — это тракты, или каналы, по которым текут горячие газы и холодный воздух. Подобные гибридные двигатели обладают значительными преимуществами при больших дозвуковых скоростях полета, в этих случаях они расходуют меньше топлива, чем турбореактивные и турбовинтовые. А ведь эта область скоростей полета очень важна, с такими скоростями летают современные реактивные пассажирские самолеты. Поэтому турбовентиляторные двигатели и пользуются ныне большим успехом, в особенности в гражданской авиации. Они устанавливаются на ряде новых реактивных лайнеров, в частности, на отечественных самолетах «ТУ-124», летающих на трассах Аэрофлота.
Но уже созданные двигатели-гибриды далеко не исчерпывают всех имеющихся возможностей. Новые, более совершенные гибриды позволят шагнуть еще дальше по пути развития авиации.
Предложены различные конструкции двигателей-гибридов, которым, может быть, суждено стать двигателями авиации завтрашнего дня.
Первым таким двигателем может быть назван турбопрямоточный. Он представляет собой сочетание турбореактивного и прямоточного двигателей. Но ведь мы уже знаем такой гибрид — это турбореактивный двигатель с форсажной камерой. Правда, подобное сочетание, как было отмечено, носит несколько «кустарный» характер. А ведь можно органически слить оба двигателя! Так это и сделано в турбопрямоточном двигателе. В нем турбореактивный двигатель расположен в центральном теле сверхзвукового прямоточного двигателя, для которого такое тело необходимо. По существу, выходит, что турбопрямоточный двигатель представляет собой турбореактивный, помещенный в окружающий его воздушный канал…
Мы уже знаем, что в турбореактивном двигателе газы, поступающие на лопатки турбины, приходится сильно охлаждать с помощью свежего воздуха. Но от этого катастрофически снижается тяга, без которой невозможен сверхскоростной полет.
Двигатели-гибриды.
А нельзя ли сделать так, чтобы газы, выходящие из камеры сгорания, служили только для создания тяги и вытекали бы с большой скоростью из двигателя, минуя турбину? При этом не будет необходимости охлаждать их, скорость истечения намного повысится — следовательно, увеличится и драгоценная тяга двигателя. Но что же тогда будет с турбиной? Как заставить ее вращаться и развивать мощность, нужную для компрессора двигателя? Ведь эта мощность поистине огромна: в некоторых двигателях она превосходит 50 тысяч лошадиных сил!
Но, может быть, такие газы для вращения турбины можно получить с помощью ракетного двигателя, не нуждающегося, как известно, в атмосферном воздухе? Установить для этого простой и легкий жидкостный ракетный двигатель перед турбиной, подобрать топливо так, чтобы продукты сгорания имели как раз ту температуру, которая нужна для турбины, — и задача решена.
Такой двигатель, названный турборакетным, будет обладать рядом достоинств своих «родителей» — турбореактивного и ракетного. В частности, мощность его турбины не снижается с высотой, как у турбореактивного двигателя, то есть он становится высотным, как и ракетный. Турборакетный двигатель окажется очень эффективным для скоростных самолетов.
И, наконец, последний пример.
Хорошо известна основная слабость прямоточного двигателя. Несравненный по своим качествам при полете с большими сверхзвуковыми скоростями, он оказывается совершенно беспомощным при взлете и малых скоростях полета. Самолет с прямоточным двигателем должен иметь еще один двигатель — для взлета. Обычно для этой цели устанавливается либо турбореактивный, либо ракетный двигатель.
Но, может быть, создание нового двигателя, сочетающего в себе свойства прямоточного и ракетного, позволило бы достигнуть лучших результатов? Так родилась идея еще одного двигателя-гибрида — ракетно-прямоточного. В этом двигателе, похожем на обычный сверхзвуковой прямоточный, в центральном теле установлен жидкостный ракетный двигатель. Ракетный двигатель работает на взлете и на очень больших высотах, где тяга прямоточного двигателя из-за малой плотности атмосферного воздуха очень низка. Но на ряде режимов работают оба двигателя. При этом показатели у «гибрида» лучше, чем у исходных двигателей в отдельности. Ракетно-прямоточный двигатель может быть использован для самолетов с очень большой скоростью и высотой полета.
В книге рассказывается о том, как создавалась астронавтика — наука о межпланетных сообщениях, об основах этой науки, ее удивительном настоящем и увлкательном будущем. В ней говорится о многочисленных невиданных трудностях, стоящих на пути человека в Космос, и о том, как наука и техника преодолевают эти трудности, как готовится полет человека в космическое пространство.
В книге в популярной форме изложены принципы работы и устройства ракетных двигателей, работающих на твердом и жидком топливе. Приведено описание двигателей дальнобойной ракеты и ракетного самолета. Рассмотрены возможности, связанные с применением ракетных двигателей в авиации и артиллерии. Указаны пути и перспективы дальнейшего развития ракетных двигателей.
Из введения: ...В книге будет рассказано также о том, какие интересные и сложные физические процессы происходят при работе воздушно-реактивных двигателей и как ученые и инженеры овладевают и управляют этими процессами, вписывая блестящие страницы в историю борьбы за овладение силами природы и покорение их человеком; о том, как устроены различные воздушно-реактивные двигатели, каковы их характеристики и их место в авиации настоящего и будущего; о тех замечательных перспективах, которые открываются перед реактивной авиацией будущего, и о том, как ученые и конструкторы борются сегодня за то, чтобы возможное стало действительным...
В книге рассказывается о самых различных применениях воздушной подушки в настоящее время и в будущем: о летающих автомобилях, судах и поездах, о воздушных домах, о городах под куполом и многом другом.
Статья, дающая смелый прогноз развития электротехники, транспорта, энергетики на 70 лет вперед. Напечатана 15 февраля 1927 года в газете "Харьковский пролетарий". Перевод с французского.
Что такое время? Странный вопрос. Ведь это каждый знает. Все только и говорят о нем. «Катастрофически не хватает времени», — жалуются одни. «Как медленно течет время», — говорят другие, когда приходится чего-то или кого-то ждать. То и дело можно слышать вопрос: «Который час?» или (что не очень правильно) «Сколько сейчас времени?»А между тем еще в древности один философ сказал: «Я прекрасно знаю, что такое время, пока не задумываюсь об этом. Но стоит мне задуматься, и я не могу ответить».С тех пор как были сказаны эти слова, прошло много лет, но до сих пор далеко не все тайны времени разгаданы.
В книге рассмотрены последние достижения физики и их применения в ряде отраслей современного производства, приборостроения, в электронике, связи, транспорте и медицине. Изложены физические основы мембранной технологии, перспективы использования солитонов и другие вопросы. Книга предназначена для дополнительного чтения по физике в средних специальных учебных заведениях. Может быть полезна учителям физики и учащимся школ и профтехучилищ.
Очерк преподавателя Военно-морской академии Алексея Травиничева, в котором сравнивается "Наутилус" Жюля Верна с реальными подводными судами начала ХХ века. Помимо оценки эффективности действия подводных лодок в реальных боевых ситуациях и тактико-технических характеристик новейших субмарин, оценивается их возможное применение для научно-исследовательской работы в океане…
Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.
Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.