В мире незримого - [40]

Шрифт
Интервал

Обладая слабой болезнетворностью, опухолеродные вирусы могут долгие годы (и даже всю жизнь) находиться в организме, не причиняя вреда. Лишь под влиянием каких-то причин, например, канцерогенных, лучевых или других факторов, происходит их активизация, накопление, усиление болезнетворных свойств, а в результате возникает опухоль. Существует и другое мнение, что канцерогенные вещества подготавливают клетки к проникновению в них вируса.

Как в настоящее время доказывается наличие опухолеродных вирусов и их роль? Из многих методов остановимся на отдельных, имеющих большое значение. С помощью электронного микроскопа при громадных увеличениях до 100 тыс. раз и более удалось обнаружить вирусы, увидеть их форму и даже измерить величину в миллимикронах. В лаборатории профессора А. Д. Тимофеевского с помощью электронного микроскопа в различных раковых опухолях обнаружены вирусоподобные тельца размером от 30 до 100 миллимикрон. Не всегда, правда, и не при всех опухолях удается даже с помощью лучших электронных микроскопов обнаружить вирусы. Одной из причин этого, по-видимому, является малое количество вирусных частичек в препаратах. Значит, надо увеличить их количество, решают ученые, но здесь они встретились с новыми трудностями.

Опухолеродным вирусам присущи свойства всех вирусов проходить через бактериальные фильтры, а также еще одно важное свойство — внутриклеточный паразитизм. Вне клетки, даже в самых сложных искусственных питательных средах, опухолеродные вирусы развиваться не могут. Для их жизни и размножения нужны только живые клетки тканей животных, человека. Создаются методы культивирования вирусов. Если удастся добиться размножения вирусов, это поможет не только лучше видеть их в электронном микроскопе, — но будет и важным доказательством живой природы опухолеродных вирусов. Ведь размножается лишь живое. Наконец, имея культуры вирусов, можно изучать их свойства, переносить (пассировать) их с одной культуры тканей на другую, с одного развивающегося куриного эмбриона в яйце на другой, с одного животного на другое. Иначе говоря, использовать те методы культивирования вирусов, которые хорошо были разработаны для размножения вирусов вообще и возбудителей вирусных инфекций в частности. Отдельным ученым удавались длительные и даже многочисленные пассажи различных опухолеродных вирусов, но выяснилось, что вирусные частички, находимые в опухолях, встречались и в нормальных тканях. Что же это, крушение всей теории об опухолеродных вирусах или ключ к пониманию их своеобразных свойств и особенностей? Второе оказалось правильным и позволило изучить вопрос о важных свойствах опухолеродных вирусов.

Было установлено, что они могут находиться в организме в скрытом неактивном состоянии и не проявлять себя. Когда была доказана возможность перевивки опухолей с помощью бесклеточных фильтратов (что было важным аргументом в пользу вирусной теории возникновения опухолей), встал вопрос: почему же не все опухоли можно переносить так, как, например, саркому Рауса?

Ученые нашли объяснение и этому — не все вирусы обладают такой стойкостью, как вирус Рауса. Вирусы многих опухолей при приготовлении фильтратов разрушаются или переходят в скрытое (маскированное) состояние. Это явление маскировки вирусов опухолей доказано в эксперименте. Еще одна интересная особенность. Существует, например, доброкачественная опухоль у кроликов — папиллома Шопа. Пока опухоль остается доброкачественной, ее можно перевивать с помощью бесклеточных фильтратов. Но вот под влиянием каких-то причин папиллома Шопа переходит в злокачественную форму, а с этим теряется возможность перевивать ее бесклеточным фильтратом. Куда же девался вирус? По-видимому, он переходит в маскированную форму. Академик АМН СССР Л. А. Зильбер считал, что такой вирус подвергается как бы блокаде со стороны белка образовавшейся опухолевой ткани.

Итак, подведем краткие итоги. Электронный микроскоп позволил увидеть вирусы в различных опухолях, а бесклеточные фильтраты, содержащие вирусы, дают возможность перевивать опухоли. Существуют ли еще какие-либо доказательства вирусной теории образования опухолей? Да, и очень важные. Можно привести аналогию с микробами и вирусами — возбудителями инфекционных болезней. Когда болезнетворные микроорганизмы попадают в организм человека или животных, они вызывают образование против себя антител, т. е. защитных веществ. Так, Раус считал, что доказательством роли опухолеродных вирусов в возникновении рака является образование антител со свойствами, присущими им, специфичности. Эти вещества по-разному губительно действуют на микробов. Это же доказано и в отношении опухолеродных веществ. Ставились, например, такие опыты. Кроликов иммунизировали экстрактом из раковой опухоли молочных желез мышей. В результате в сыворотке крови кроликов скапливались антитела. Если экстракт раковой опухоли смешать с такой сывороткой и поставить на 2 ч в термостат при температуре +37 °C, то экстракт раковой опухоли будет обезврежен и не вызовет опухоли у мышей.

Вводили мышам такую же иммунную сыворотку, а затем опухолевый экстракт. Опухоль снова не возникала. Если же вводили для контроля нормальную сыворотку (не содержащую, антител), а затем опухолевый экстракт, опухоль возникала.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.