В мире металлов - [54]
Если, например, стальную полосу, к которой прикреплен датчик, сгибать попеременно в одну и другую сторону, то сначала самописец будет чертить на бумажной ленте прямую линию — это значит, что сталь выдерживает нагрузку "без осложнений". Но вот на ленте появился крохотный зубчик, затем другой, третий… Так установка сигнализирует о том, что кристаллическая решетка "дала трещину". Чем сильнее развивается разрушительный процесс, тем более крупные зубцы вычерчивает самописец.
Эффективный метод испытаний металлических конструкций, также основанный на акустической эмиссии металла, разработан на одном из чехословацких заводов, изготовляющем оборудование для атомных электростанций. Такое оборудование необходимо постоянно контролировать в процессе эксплуатации. Для этой цели в наиболее ответственных узлах конструкций устанавливают пьезоэлектрические датчики, способные улавливать до 3000 сигналов из "недр" металла. Сигналы передаются на ЭВМ и здесь расшифровываются, благодаря чему обслуживающий персонал всегда в курсе "настроений" металла.
Радуга на стали
Кто из нас не любовался радужными переливами на поверхности мыльных пузырей? Но, вероятно, мало кто при этом задумывался, чем же объясняется такая игра света на тонкой прозрачной пленке. А вот ученые из ФРГ заинтересовались этим явлением и нашли ему любопытное практическое применение. Радуга на мыльной пленке вызывается интерференцией световых лучей. Этот оптический эффект и был положен западногерманскими химиками в основу разработанного ими оригинального способа "окраски" стали. На поверхность металла наносится бесцветный прозрачный слой толщиной в несколько микрон. Тончайшая пленка позволяет лучам света наиболее ярко продемонстрировать свои интерференционные "способности". А поверхность стальных изделий "окрашивается" при этом в разнообразные цвета — от черного и темно-синего до зеленого, золотистого, красного.
Покрытие не боится ударов и изгибов, безболезненно переносит прессование и вытяжку. К "окрашенному" новым способом металлу уже присматриваются строители, которые намерены использовать его для декоративной отделки зданий.
Кобальтовый гразер
Примерно четверть века назад появились первые микроволновые генераторы — мазеры, вскоре были созданы оптические генераторы — лазеры, а затем инфракрасные — иразеры. Совсем недавно австралийские физики разработали гамма-лучевой генератор — гразер. Главное действующее лицо в нем — изотоп кобальта 6 °Co, помещенный в криостат, где поддерживается температура, близкая к абсолютному нулю. Подвергнутый действию радиоизлучения и сильного магнитного поля, изотоп 6 °Cо испускает радиоактивное излучение только в одном направлении, причем длина волны этого излучения в миллион раз меньше длины световых волн.
Гразеры позволят получать трехмерные "портреты" молекул и атомов, обеспечат высокую точность резания металлов, помогут хирургам в проведении сложнейших операций, найдут применение в космической навигации, астрономии, ядерной физике.
Последние из "могикан"
После того как в 1911 году было открыто явление сверхпроводимости, круг сверхпроводников непрерывно расширялся. Свою готовность "беспрекословно" проводить при очень низкой температуре электрический ток уже продемонстрировали почти все металлы и сплавы, ряд полупроводников и даже некоторые полимеры. И только щелочные металлы до последнего времени упорно продолжали "чинить препятствия" току даже вблизи абсолютного нуля. Это обстоятельство шло вразрез с общепризнанной теорией сверхпроводимости, согласно которой щелочные металлы не имели никаких привилегий перед своими собратьями по таблице элементов.
Несколько лет назад итальянский ученый К. Реале из Миланского института физики все же сумел "уговорить" литий и цезий подчиниться общим для всех металлов законам. Правда, у этих представителей щелочного семейства сверхпроводимость удалось пока обнаружить лишь в тонких пленках (толщиной в доли микрона) при температуре всего 1–2 градуса Кельвина (т. е. вблизи абсолютного нуля).
"Фотогеничный" металл
Современная техника позволяет ученым не только заглянуть в самые "недра" металлов и других материалов, но и получить "на память" соответствующие фотоснимки. Так, специалисты Кембриджского университета (Великобритания), применив электронный микроскоп с высокой разрешающей способностью, сумели сфотографировать структуру ряда аморфных веществ и кристаллов. Снимки показывают, что атомы аморфных тел располагаются хаотически, в то время как атомы кристаллов занимают места в строго определенном порядке. Особенно "фотогеничными" оказались атомы золота: на "портретах", увеличенных в семь миллионов раз, отчетливо видны ряды атомов, располагающиеся на расстоянии 0,235 нанометра (нанометр — одна миллиардная доля метра) друг от друга.
Полку лютеция прибыло
Как известно, природный лютеций состоит из двух изотопов — стабильного 175 Lu (около 97,5 %) и бета-активного 176 Lu с периодом полураспада 20 миллиардов лет. Искусственным путем было получено еще несколько радиоактивных изотопов этого редкоземельного элемента с периодами полураспада от 22 минут до 500 дней. До недавнего времени самым "молодым" из них считался изотоп 166 Lu, "найденный" в 1968 году учеными Объединенного института ядерных исследований (ОИЯИ) в Дубне. И вот недавно там же в результате бомбардировки высокоэнергичными протонами мишеней из вольфрама и тантала на свет появилось еще четыре изотопа лютеция с массовыми числами 158, 160, 161 и 163. Периоды полураспада "новорожденных" измеряются десятками секунд.
Научно-популярная книга об истории открытия, свойствах и применении важнейших металлов и сплавов. Много веков металлы верно служат человеку, помогая ему строить и созидать, покорять стихию, овладевать тайнами природы, создавать замечательные машины и механизмы. Богат и интересен мир металлов. Среди них встречаются старые друзья человека: медь, железо, свинец, золото, серебро, олово, ртуть. Эта дружба насчитывает уже тысячи лет. Но есть и такие металлы, знакомство с которыми состоялось лишь в последние десятилетия.
Где покоятся сокровища, плененные пучиной? Как к ним добраться? Кто и когда пытался проникнуть во владения Нептуна? Кому это удалось? Что смогли люди добыть со дна моря? Об этом живо и интересно рассказывает брошюра.http://znak.traumlibrary.net.
Какова судьба сокровищ легендарного лидийского царя Креза? Куда исчезли драгоценности средневекового духовно-рыцарского ордена тамплиеров? Где золото Монтесумы? Хранит ли Урал клад Пугачева? Удастся ли найти богатства награбленные Наполеоном в России?Об этом и многом другом, связанном с припрятанными сокровищами, живо и интересно рассказывает автор на страницах брошюры.http://znak.traumlibrary.net.
В научно-популярной форме автор рассказывает об истории открытия, свойствах и применении важнейших редких (в том числе и рассеянных) металлов.Книга предназначена для самого широкого круга читателей: студентов, преподавателей, учащихся, специалистов — всех интересующихся историей и развитием металлургии, химии, материаловедения.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В книге кандидата биологических наук Г. Свиридонова рассказывается о рациональном и эффективном использовании природных богатств на благо человека, об их охране и воспроизводстве. Издание рассчитано на массового читателя.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.
Книга посвящена чрезвычайно увлекательному предмету, который, к сожалению, с недавних пор исключен из школьной программы, – астрономии. Читатель получит представление о природе Вселенной, о звездных и планетных системах, о ледяных карликах и огненных гигантах, о туманностях, звездной пыли и других удивительных объектах, узнает множество интереснейших фактов и, возможно, научится мыслить космическими масштабами. Книга адресована всем, кто любит ясной ночью разглядывать звездное небо.