В делении сила. Ферми. Ядерная энергия - [5]

Шрифт
Интервал

Ферми сам дополнял эти полезнейшие сведения случайными книгами, которые находил по средам на рынке Кампо-деи-Фиори, и делился с Персико своими достижениями.


Я с усердием занимаюсь математикой, потому что считаю ее необходимой для изучения физики, которой хочу всецело себя посвятить.

Ответ Энрико Ферми на вопрос Адольфо Амидеи о его предпочтениях в учебе


Адольфо Амидеи был поражен успехами молодого Ферми.

В 1918 году он сказал его отцу, что вместо римского университета Ла Сапиенца для Энрико было бы лучше попробовать получить стипендию на учебу в престижной Высшей нормальной школе Пизы. Поначалу Ида и Альберто не оценили эту идею.

Ла Сапиенца считался хорошим университетом, к тому же он находился рядом с домом. С момента смерти Джулио прошло слишком мало времени, и родители не хотели расставаться со вторым сыном, хотя Пиза тоже была не так уж далеко. Однако настойчивость Амидеи и самого Энрико в конце концов преодолела их сопротивление. Амидеи посоветовал Ферми учить немецкий, который в то время был языком физики.

На одном из вступительных испытаний 14 ноября 1918 года Ферми поразил экзаменаторов, в частности профессора математики Римского университета Джузеппе Питарелли, подробным докладом о свойствах звука и вибрации струн под названием «Характер и причины звуков», в котором демонстрировал прекрасное владение методами решения дифференциальных уравнений и анализом Фурье. Питарелли никогда в жизни не видел ничего подобного. Знания Ферми были на уровне выпускника, а не ученика старшей школы. В его лице Пизанский университет приобретал гениального студента.


ВОЛНЫ ИЛИ ЧАСТИЦЫ?

Вопрос о том, какую природу имеет свет — волновую или корпускулярную, решался в учебнике Караффы неправильно. Исаак Ньютон (1643-1727) в своем трактате об оптике 1704 года уже использовал корпускулярную модель для объяснения отражения и преломления света. По теории Ньютона, в воде и в стекле свет перемещается с большей скоростью, чем в воздухе, что было неправильным предположением, как и то, что свет перемещается практически мгновенно, а его лучи распространяются только по прямой. Эти взгляды ученого подверглись жесткой критике со стороны современников, особенно англичанина Роберта Гука (1635-1703) и голландца Христиана Гюйгенса (1629-1695). Описывая феномен преломления, они предполагали, что свет достигает максимальной скорости в воздухе, и отстаивали его волновую природу. Французский физик Огюстен Френель (1788-1827) провел множество опытов по интерференции и дифракции и заложил математические основы волновой теории света — единственной, которая могла объяснить его дифракцию. При дифракции волны искривляются, наталкиваясь на препятствие или проходя через отверстие.

В 1801 году английский ученый Томас Юнг (1773-1829) доказал правильность волновой теории с помощью своего знаменитого опыта с двойными прорезями. Эксперимент заключался в следующем: на две узкие прорези, расположенные одна рядом с другой, направлялся луч света. Таким образом получалось два пучка света, и на проекционном экране была видна интерференция, то есть светлые и темные полосы (рисунок 1). Это, бесспорно, доказывало волновую природу света: если бы свет состоял из частиц, то интерференции не наблюдалось бы и частицы, достигшие экрана, сконцентрировались бы перед прорезями, создав две освещенные области (рисунок 2).

РИС. 1

РИС. 2


Когда в 1860 году шотландский физик Джеймс Клерк Максвелл (1831—1879) опубликовал свою математическую теорию электромагнетизма, казалось, что волновая теория победила окончательно. В ее рамках были разработаны уравнения, которые предсказывали существование волн, подтверждавших ее истинность. Максвелл воспользовался разработками других ученых, таких как Гаусс, Фарадей, Ленц и Ампер. Его заслуга заключалась в том, что он объединил разрозненные исследования на тему магнетизма и доказал, что скорость света в вакууме (с) равна приблизительно 300000 км/с и что свет является формой электромагнитного излучения, описывающейся уравнением

c = 1/√(ε>0μ>0),

где ε>0 — электрическая постоянная, или, как тогда ее называли, электрическая проницаемость вакуума (8,854-10>-12 Ф/м), а μ>0 — магнитная постоянная, или магнитная проницаемость вакуума (4π-10>7 Гн/м). Электрическая проницаемость материала — это значение, которое показывает, как он ведет себя в присутствии электрического поля, а магнитная проницаемость характеризует способность материала пропускать через себя магнитные поля. Большим достижением Максвелла было то, что он объяснил природу света, связав ее с электромагнитными свойствами материалов, через которые свет проходит. Молодой Ферми был очарован универсальными постоянными — эти числа, справедливые для всей Вселенной, словно ждали, пока их откроют.

По мере того как ученые продвигались в изучении света, стали проявляться свойства недавно открытых катодных лучей. Немецкий физик и математик Юлиус Плюккер (1801-1868) в 1858 году обнаружил разряды в некоторых газах, запаянных в стеклянные трубки, откуда предварительно был откачан воздух. В 1897 году в Кавендишской лаборатории в Кембридже британский ученый Джозеф Джон Томсон (1856-1940) измерил соотношение между разрядом и массой электрона (е/m).


Рекомендуем почитать
Знание-сила, 1997 № 02 (836)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 2008 № 10 (976)

Ежемесячный научно-популярный и научно-художественный журнал.


Физике становится тепло. Лорд Кельвин. Классическая термодинамика

Под именем лорда Кельвина вошел в историю британский ученый XIX века Уильям Томсон, один из создателей экспериментальной физики. Больше всего он запомнился своими работами по классической термодинамике, особенно касающимися введения в науку абсолютной температурной шкалы. Лорд Кельвин сделал вклад в развитие таких областей, как астрофизика, механика жидкостей и инженерное дело, он участвовал в прокладывании первого подводного телеграфного кабеля, связавшего Европу и Америку, а также в научных и философских дебатах об определении возраста Земли.


Знание-сила, 2008 № 01 (967)

Ежемесячный научно-популярный и научно-художественный журнал.


Знание-сила, 2006 № 04 (946)

Ежемесячный научно-популярный и научно-художественный журнал.


Во что мы верим, но не можем доказать

Книга о самых невероятных, оригинальных научно-фантастических идеях, которые в будущем, возможно, станут реальностью. О том, как самые разные ученые, оказывается, способны поверить в любые гипотезы и поведать всем нам о своих идеях, связанных с новыми областями эволюционной биологии, генетики, компьютерных наук, нейрофизиологии, психологии и физики…