В делении сила. Ферми. Ядерная энергия - [24]
Ферми решил приступить к работе в Колумбийском университете, где он мог использовать только что созданный группой Джона Даннинга циклотрон, о котором узнал от Джорджа Пеграма. Среди участников группы Даннинга особенно выделялся Херберт Андерсон, разработавший устройство для наблюдения ионизации, вызванной осколками, которые отлетают от ядра в ходе его деления. Благодаря осциллоскопу с катодными лучами, 25 января 1939 года Андерсон выявил импульсы, вызванные делением урана.
После того как нейтрон вызывал первое деление урана, необходимо было подсчитать количество нейтронов, получавшихся в ходе деления, и количество высвобождающейся энергии. Ферми настаивал на необходимости квантитативных методов для разработки способов практического применения, которые он уже держал в уме. Над первой статьей, написанной в США, — The Fission of Uranium («Деление урана») — Ферми работал вместе с группой Даннинга, руководителя диплома Андерсона. В тексте, опубликованном в журнале The Physical Review, были представлены вычисления эффективного сечения при столкновениях медленных и быстрых нейтронов и их обратная зависимость от скорости, что было доказано в опыте с изотопом урана-235, способного к делению. Ферми остановился на испускании нейтронов и на проблеме цепной реакции. Параллельно с ним, также в Колумбийском университете, физик венгерского происхождения Лео Силард и его канадский помощник Вальтер Зинн изучали испускание вторичных нейтронов после деления.
РИС. 1
Для того чтобы контролировать цепную реакцию, необходимо поглощать часть высвобождающихся нейтронов. В реакторах используются аварийные стержни из материалов, слабо подверженных делению и хорошо поглощающих нейтроны, таких как бор и кадмий (рисунок 1). Чтобы замедлить быстрые нейтроны, используется замедлитель, например тяжелая вода или графит, которые применял Ферми, так как медленные нейтроны вызывают больше процессов деления и их легче поглотить аварийными стержнями (рисунок 2).
РИС . 2
Благодаря структура графит особенно хорошо выполняет функцию замедлителя нейтронов. Вода не является хорошим замедлителем, так как ее протоны имеют тенденцию соединяться с нейтронами, что уменьшает эффективность реакции.
Вскоре Ферми вместе с Хербертом Андерсоном и Лео Силардом опубликовал в The Physical Review статью Neutron Production and Absorption of Uranium («Образование и поглощение нейтронов в уране»), в которой говорилось, что при делении ядер урана с помощью медленных нейтронов, испускаемых нейтронов было больше, чем поглощенных, а также что тепловые нейтроны не могли правильно замедляться водой. По подсчетам ученых, в среднем при каждом делении получалось 1,2 вторичных нейтрона, и это количество могло увеличиться до 1,5. Это был первый и последний проект Ферми в сотрудничестве с Лео Силардом. Ученые слишком по-разному подходили к работе, и это вызывало разногласия. К тому же некоторая неорганизованность Силарда нервировала Ферми, который во всем любил порядок и систематичность.
Так образовались две исследовательские группы, одну из которых возглавил Ферми, а другую — Силард. Сначала они соперничали за первенство публикаций о вторичных нейтронах, получаемых в ходе деления урана: в марте 1939 года каждая группа подготовила статью для The Physical Rexnew. Силард написал ее совместно с Зинном, а Ферми — с Андерсоном. Так или иначе, профессиональные отношения между Силардом и Ферми сохранились на долгие годы и оставили след в виде обширной переписки. Со временем Ферми понял, что Силард — хороший организатор, умеющий вести переговоры с поставщиками и политиками. Именно он убедил Ферми в том, что возможность создать оружие массового поражения, использующего энергию деления ядра, более чем реальна.
Утром 16 марта Джордж Пеграм организовал встречу с Силардом и Ферми, на которой присутствовал также Юджин Вигнер, физик из Принстона. Вигнер был другом Эйнштейна и, как и Силард, венгерским беженцем. Ученые говорили о необходимости держать свои исследования в секрете или, по крайней мере, как можно меньше рассказывать о них в печати. Силард выступал за полное неразглашение, в то время как Ферми взывал к традиции и научной этике. Далекий от мыслей о военном использовании открытия, он был слишком наивен, а может быть, просто сомневался в потенциальной возможности такого использования ядерной энергии. В итоге ученые решили, что они должны связаться с правительством США и военным командованием: и для того, чтобы сохранить исследования в секрете, и для того, чтобы получить финансирование. Ферми проинформировал североамериканские власти 18 марта 1939 года о возможности применения атомной энергии в военных целях.
Эта модель была предложена Бором и Уилером в 1939 году. Ход деления ядра можно изменять при помощи параметра s, который обозначает расстояние между новыми атомными ядрами и начальным ядром, как в случае с каплей, делящейся на две (рисунок 1). Если V(s) — потенциальная энергия системы, зависящая от s, то вначале значение s невелико; бомбардируемое ядро вибрирует, и его поверхностное натяжение побеждается электрическим отталкиванием. V(s) увеличивается из-за поверхностного натяжения так же, как при делении капли воды. Превысив определенный порог, натяжение перестает быть релевантным, и начинает действовать электростатическое отталкивание между двумя новыми ядрами с положительным зарядом, осколками деления (рисунок 2). Этот процесс, вероятнее всего, происходит спонтанно или же очень медленно. При делении, наведенном бомбардировкой термическими нейтронами, если у них достаточно энергии, барьер деления V(s), равный примерно 6 МэВ для больших ядер, сохраняется, и начинается цепная реакция. Если она происходит на ядерной станции, реакцию можно контролировать, а если в бомбе, то нет. Ядерная энергия деления происходит от разницы масс продуктов деления и реагентов по знаменитой формуле Эйнштейна Е = mc
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.