В делении сила. Ферми. Ядерная энергия - [20]

Шрифт
Интервал

В мае 1934 года Ферми предложил создавать искусственным образом несуществующие на Земле элементы, например элемент 93, который он, как ему казалось, получил в ходе некоторых экспериментов по бомбардировке урана. Корбино, выступая на конференции перед королем Виктором Имануилом III, рассказал о достижениях научной группы Ферми и обрисовал перспективу создания новых элементов. Фашистская пресса тут же подхватила эти слова, воздавая похвалы ученым и подчеркивая огромный вклад итальянской науки в развитие человечества — науки, «поощряемой фашистским режимом», и говоря об открытии элемента-93 как о свершившемся факте. Ферми очень рассердился на Корбино. Он не хотел никакой рекламы, особенно если речь шла о лжи мировому сообществу. Слишком много сил он потратил на то, чтобы заслужить репутацию, и ученый не хотел ее разрушить. Корбино понял сложность положения, однако было поздно: из скандальной европейской прессы новость докатилась до The New York Times.


МЕДЛЕННЫЕ НЕЙТРОНЫ

Осенью 1934 года Ферми поручил Амальди и Бруно Понтекорво подсчитать количество радиации, излучаемой каждым бомбардируемым элементом. Амальди тем летом был вместе с Сегре в Кембридже и опубликовал там в журнале Proceedings of the Royal Society анализ на тему «Радиоактивность, наведенная нейтронной бомбардировкой». Амальди знал, что условия эксперимента оказывали значительное влияние на количество испускаемой радиации.

Между 18 и 22 октября того же года Амальди и Понтекорво изучили поглощающие свойства таких материалов, как свинец, в зависимости от величины вещества и условий эксперимента. В свинцовую коробку они поставили цилиндр из серебра, а счетчик Гейгера разместили позади источника нейтронов радона-бериллия (см. рисунок на следующей странице). Ученые провели несколько опытов с цилиндрами одинаковых размеров, но из разных материалов, меняя их положение в коробке. Измеряемая радиоактивность менялась в зависимости от положения цилиндров, и ученые не понимали причин этого.

Амальди и Понтекорво поделились трудностями с Ферми и Разетти. Те изменили эксперименты так, чтобы устранить возможные причины ошибок: Разетти был уверен (и совершенно справедливо), что для уменьшения статистических ошибок нужна большая точность. Амальди вместе с Понтекорво поняли, что радиоактивность менялась в зависимости от того, проводились опыты на деревянном или мраморном столе. Тогда Ферми предложил проделать все то же самое вне свинцовой коробки: радиоактивность менялась даже при приближении металлических или других предметов. Тогда он посоветовал поместить между нейтронным источником и серебряным цилиндром различные материалы. Несколько дней все «ребята с улицы Панисперна» участвовали в опытах.

Некоторые свинцовые плиты, помещенные между источником и цилиндром, увеличивали радиоактивность. Тогда Ферми решил попробовать то же самое с блоком парафина, и радиоактивность выросла в огромное количество раз. Медленные нейтроны могли увеличивать радиоактивность.

Схема бомбардировки в эксперименте Ферми.


Объяснялось это так: при столкновении с легкими атомами, такими как атомы воды или парафина, некоторые нейтроны отдавали им часть своей энергии, не будучи при этом поглощенными, а затем, после нескольких столкновений, приобретали скорость, свойственную материалу, становясь так называемыми термическими нейтронами, которые увеличивали свою эффективность при столкновениях с цилиндром, так как с большей легкостью вступали в резонанс с ядрами атомов серебра. Поэтому деревянные столы способствовали небольшому увеличению радиации по сравнению с мрамором: они сильнее сдерживали нейтроны. В структуре парафина и дерева находятся ядра водорода, которые содержат протон с массой, близкой к массе нейтрона, поэтому торможение нейтронов облегчало их взаимодействие с ядрами атомов серебра.

Ферми предложил провести опыт с большим количеством воды. Если его теория была верна, то большое количество водорода в воде произвело бы такой же эффект, что и парафин. Исследователи решили пойти к фонтану в частном саду сенатора Корбино, который, будучи начальником отделения, жил на четвертом этаже здания на улице Панисперна. Погрузив нейтронный источник и серебряный цилиндр в воду, они увидели, что, как и ожидалось, радиоактивность значительно увеличилась. Ферми был прав. В ту же ночь ученые написали статью для La ricerca scientifica под названием «Влияние водородсодержащих веществ на радиоактивность, наведенную нейтронами», за которой последовали еще несколько работ, дополняющих ее.

Через пару дней после этого вторжения Корбино увиделся с исследователями в лаборатории и попытался убедить их больше ничего не публиковать о медленных нейтронах. Сначала Ферми был очень удивлен, но прагматичный Корбино объяснил ему свою позицию: их открытие могло быть использовано в промышленных целях, а потому его надо запатентовать. Он сразу понял, что радиоактивные изотопы можно применять, например, в медицине как маркеры, а также в ядерных технологиях. В декабре того же года ученые начали готовить документы, и 26 октября 1935 года Ферми, Разетти, Сегре, Амальди, Д’Агостино, Понтекорво и Трабакки (химический поставщик) получили первый патент (под номером 324458). В 1953 году после нескольких лет разбирательств правительство США выплатило 400 тысяч долларов за права на этот патент, по 24 тысячи долларов Ферми и каждому из членов группы, а также покрыло все судебные издержки.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.