В делении сила. Ферми. Ядерная энергия - [19]
В данном примере мы получаем один позитрон и один нейтрино. Тот факт, что для формирования плавящихся материалов необходимы реакции слабого взаимодействия, гарантирует, что водород Солнца расходуется медленнее, регулируя солнечную активность и увеличивая продолжительность жизни звезды. Ферми не упускал из виду связь своего открытия с космической радиацией. В 1933 году он воспользовался тем, что в Риме находился Бруно Росси, прославившийся разработкой цикла для измерения совпадений в спаренных счетчиках Гейгера и выявления таким образом траекторий частиц, и написал с ним совместную работу «Действие магнитного поля Земли на проникающее излучение». В этой статье объяснялось геомагнитное воздействие широты и долготы на космическую радиацию, достигающую Земли. Ферми был очень доволен результатами в области изучения слабого взаимодействия и считал их своими главными достижениями, достойными того, чтобы остаться в памяти потомков. На основе этой работы японский физик Хидэки Юкава (1907-1981) в 1935 году сформулировал свою теорию мезонов, и с нее началась революция в ядерной физике и физике элементарных частиц.
В январе 1934 года, бомбардируя альфа-частицами ядра бора и алюминия, Ирен Кюри и Фредерик Жолио получили первые искусственные радиоактивные изотопы. Ирен шла по стопам своих родителей, Пьера и Марии Кюри, которые детально изучили поведение естественных радиоактивных изотопов радия и полония и более тяжелых элементов, таких как уран и торий.
Легкие ядра, подвергавшиеся бомбардировке альфа-частицами, довольно быстро излучали позитроны, демонстрируя, таким образом, хорошие радиоактивные свойства, в то время как ядра более тяжелых атомов подобной наведенной радиации не проявляли. Альфа-частицы, как и положительные ионы гелия, не действовали на тяжелые ядра из-за повышенного содержания в них электронов, которые уменьшали воздействие на ядра вследствие электромагнитного отталкивания. Процесс усложнялся и за счет повышенного отталкивания тяжелых ядер.
В начале марта 1934 года в руки Ферми попала статья Кюри и Жолио. Он сразу предложил Разетти провести те же эксперименты, но не с альфа-частицами, а с нейтронами, чтобы избежать электромагнитных трудностей. Разетти разработал несколько источников нейтронов, полония и бериллия, а также еще один, более мощный, радона и бериллия. Он собирался ехать в отпуск, но Ферми не мог тянуть с началом опытов. В отсутствие Разетти ему пришлось самому сконструировать счетчик Гейгера (с чем он блестяще справился) и быстро получить радон для нейтронного источника. Надо сказать, что Ферми повезло: у профессора Джулио Чезаре Трабакки, директора хорошо оснащенных лабораторий итальянской санитарной службы, был радий и необходимые приборы для извлечения из него радона по методу Марии Кюри. Радон — это газ, образующийся при естественном альфа-распаде радия, как доказала Мария Кюри. Если смешать его с пылью бериллия, то порожденные альфа-частицы провоцируют выброс нейтронов.
Если результат подтверждает гипотезу, значит, вы сделали измерение. Если результат противоречит гипотезе, вы сделали открытие.
Энрико Ферми
Ферми начал систематическую бомбардировку в порядке периодической таблицы, взяв водород, литий, бор, углерод и азот. Результаты были отрицательными. Ученый немного упал духом: полученные данные заставили его сомневаться.
Тогда он решил попробовать новые элементы. Ферми пропустил кислород, потому что его бомбардировку надо было проводить в воде, и, бомбардируя фтор, сумел активировать элемент. Отреагировал счетчик Гейгера и на алюминий. Ферми отправил 25 марта 1934 года в журнал La ticerca sdentifica статью «Радиоактивность, наведенная нейтронной бомбардировкой. I», чтобы ее как можно скорее опубликовали.
В статье ученый давал интерпретацию полученных результатов для каждого элемента. Римская цифра I означала, что за этой статьей должны были последовать и другие из этой же серии, что и произошло.
Ферми понимал, что сила современной науки кроется в совместной работе. Он тут же подключил к новым исследованиям Амальди и Сегре. Помощники с энтузиазмом отнеслись к первым же результатам и предложили химику Оскару Д’Агостино присоединиться к ним (он как раз вернулся в Рим после работы в лаборатории Жолио-Кюри). Ферми отправил Разетти в Марокко телеграмму, в которой объяснял ситуацию и спрашивал, как приступать к сбору материала (речь шла обо всех элементах периодической таблицы!). Готовился поистине обширный эксперимент.
Команда исследовала более 60 элементов и открыла 40 новых радиоактивных изотопов. И это не все. При бомбардировке ядер более тяжелых элементов, тория (Z = 90) и урана (Z = 92), ученые обнаружили два новых элемента с атомным номером, превышающим 92. В статье Possible Production of Elements of Atomic Number Higher than 92 («Возможное образование элементов с атомным номером выше 92»), опубликованной в журнале Nature, элементы были названы гесперий и аузоний. Количество полученных данных и открытых радиоактивных элементов поразило группу исследователей. Возможно, поэтому ученые не обратили должного внимания на блестящую идею немецкого физика и химика Иды Ноддак (1896-1978) о возможности деления ядер урана на изотопы уже известных атомов. Время деления ядра еще не пришло.
Оказалось, достаточно всего одного поколения медиков, чтобы полностью изменить взгляд на генетические заболевания. Когда-то они воспринимались как удар судьбы, а сейчас во многих случаях с ними можно справиться. Некоторые из них почти исчезли, как, например, талассемия, отступившая на Кипре благодаря определенным политическим мерам, или болезнь Тея–Сакса, все менее распространенная у евреев-ашкеназов. Случаи заболевания муковисцидозом также сократились. Генетические заболевания похожи на родовое проклятие, то появляющееся, то исчезающее от поколения к поколению.
Книга Рюди Вестендорпа, профессора геронтологии Лейденского университета и директора Лейденской академии жизненной активности и старения, анализирует процесс старения и его причины в широком аспекте современных научных знаний. Чему мы можем научиться от людей, которые оставались здоровыми всю свою исключительно долгую жизнь? Помогут ли нам ограничения в пище или гормоны, витамины и минеральные вещества? Как сохранить свои жизненные силы, несмотря на лишения и болезни? Автор систематизирует факторы, влияющие на постоянно растущую продолжительность жизни людей нашего времени. В книге подробно обсуждаются социальные и политические последствия этого жизненного взрыва.
Если вы читали о динозаврах в детстве, смотрели «Мир юрского периода» и теперь думаете, что все о них знаете, – в этой книге вас ждет много сюрпризов. Начиная c описания мегалозавра в XIX в. и заканчивая открытиями 2017 г., ученые Даррен Нэйш и Пол Барретт рассказывают о том, что сегодня известно палеонтологам об этих животных, и о том, как компьютерное моделирование, томографы и другие новые технологии помогают ученым узнать еще больше. Перед вами развернется история длиной в 150 миллионов лет – от первых существ размером с кошку до тираннозавра и дальше к современным ястребам и колибри.
В книге в занимательной форме рассказывается об истории создания девяти известных литературных произведений: от жизненного факта, положенного в основу, до литературного воплощения.
Месяцы сочинительства и переделок написанного, мыканья по издательствам, кропотливой работы по продвижению собственной книги — так начиналась карьера бизнес-автора Екатерины Иноземцевой. Спустя три года в школе писательства, основанной Екатериной, обучались 1287 учеников, родилось 2709 статей, 1756 из которых опубликовали крупные СМИ. И главное: каждый из выпускников получил знания о том, как писательство помогает развить личный бренд. В этой книге — опыт автора в создании полезного и интересного контента, взаимодействия со СМИ и поиска вашего кода популярности.
В книге рассказывается, как родилась и развивалась физиология высшей нервной деятельности, какие непостижимые прежде тайны были раскрыты познанием за сто с лишним лет существования этой науки. И о том, как в результате проникновения физиологии в духовную, психическую деятельность человека, на стыке физиологии и математики родилась новая наука — кибернетика.