Удивительная химия - [9]

Шрифт
Интервал

Теперь о том, что мир построен из атомов, знают даже школьники младших классов. Ученые получили довольно много сведений о строении различных атомов и молекул, об их форме и размерах. Еще более важными оказались знания, относящиеся к явлениям, которые происходят при «изменении форм» различных веществ, или, выражаясь современным языком, при изменении взаимного расположения атомов, когда они объединяются в более крупные частицы — молекулы, состоящие из одинаковых или разных атомов. С точки зрения современной науки взаимное расположение атомов в молекулах, а также взаимное расположение молекул определяют свойства веществ, о чем догадывались еще древние. А процесс перестройки взаимного расположения атомов составляет сущность химической реакции.

Нелегкий путь становления теории строения вещества на основе атомистических представлений можно проследить на примере изменений, которые претерпела периодическая таблица элементов Д. И. Менделеева.

Периодическая таблица начинается с самого легкого элемента — водорода. Некоторые ученые полагали, что все химические элементы произошли от самых простых атомов. В 1815 голу английский химик Уильям Праут выдвинул гипотезу, согласно которой атомы всех химических элементов «построены» из атомов водорода. Если массу атома водорода принять за единицу, то атомные массы всех остальных элементов должны в соответствии с гипотезой Праута в целое число раз превышать массу атома водорода и потому выражаться целыми числами. Эти числа (их называют относительной атомной массой) действительно были целыми для ряда известных на то время элементов.

Во второй половине XIX века отдельные ученые попытались обосновать гипотезу Праута, но у них ничего не получилось, о чем достаточно определенно написал уже знаменитый в то время Д. И. Менделеев: «Все подобные мысли… должно относить к области, лишенной какой-либо опытной опоры». То есть на тот момент ученые не располагали надежными методами проверки истинности гипотезы Праута. Кстати, в первой таблице химических элементов, составленной Д. И. Менделеевым в 1869 году, было немногим более 60 элементов, причем атомные массы 50 из них, или у подавляющего большинства, приводились в целых числах. Но массы-то остальных 13 элементов были дробными! В чем тут дело? Сторонники гипотезы Праута считали, что просто атомные массы этих элементов были определены недостаточно точно. Ведь определить экспериментально относительную атомную массу элемента с высокой точностью в XIX веке было делом трудным; некоторые химики годами работами над этой задачей. Между прочим, сам Менделеев не был уверен в точности всех атомных масс, значениями которых он располагал. В своей первой таблице он в этих случаях ставил рядом с символом элемента знак вопроса. Так, на месте золота в этой таблице стоит Au = 197?

Однако атомные массы некоторых элементов, например, меди (63,4) или хлора (35,5), настолько сильно отличались от целых чисел, что ошибками эксперимента объяснить это было невозможно. Более того, результаты экспериментов как бы в насмешку над гипотезой Праута свидетельствовали: чем точнее становились измерения, тем у большего числа элементов обнаруживались «отклонения». Так, в последний год жизни Д. И. Менделеева шведский ученый Иоганн Ридберг (1854–1919), чьим именем названа одна из физических констант, опубликовал таблицу элементов, в которой впервые каждому элементу был присвоен соответствующий порядковый номер. В этой таблице оказалось уже 69 элементов, из которых лишь у 21 атомная масса была выражена целым числом. Любопытно, что в современной таблице Менделеева нет ни одного (!) элемента со строго целочисленной атомной массой. Объясняется это разными причинами. Одна из них, очень 24 важная, была обнаружена английским ученым Френсисом Уильямом Астоном (1877–1945) в 1919 г.

Раньше считалось, что атомы одного и того же химического элемента во всем одинаковы. Астон впервые доказал, что это не так. Они могут отличаться по массе, хотя с химической точки зрения ведут себя сходным образом. Другими словами, Астон открыл, что у элементов могут быть «близнецы-братья», но одни из них чуть полегче, другие потяжелее. Этих близнецов назвали изотопами, так как в таблице Менделеева им отвели одно и то же место (по гречески «изос» — «равный, одинаковый», «топос» — «место»). Из встречающихся в природе элементов (а их почти 90) только у 20 нет «родственников» — это элементы-одиночки. Другим же повезло больше, например у олова их целых 10! Есть изотопы и у самого легкого в природе элемента — водорода, и у самого тяжелого — урана.

После того как было доказано существование изотопов, стало понятно, почему элементы с целочисленной атомной массой встречаются гораздо реже, чем с дробной. Например, у меди было обнаружено два изотопа с атомными массами, очень близкими к 63 и 65. Легких атомов меди в природе больше — их 69 %, а тяжелых меньше — 31 %. Поскольку оба изотопа и в металлической меди, и во всех ее соединениях равномерно перемешаны, не удивительно, что измерения всегда давали усредненное значение атомной массы меди — примерно 63,5.


Еще от автора Илья Абрамович Леенсон
Четыре дамы и молодой человек в вакууме. Нестандартные задачи обо всем на свете

Замечательный химик и популяризатор науки Илья Леенсон был автором не только множества книг, но и уникальных задач, большую часть которых он придумывал для Московского интеллектуального марафона и Летних лингвистических школ. Теперь они объединены в один сборник, и у читателя есть возможность познакомиться с этими остроумными и нестандартными задачами из самых разных областей знания – от астрономии до химии, от русской поэзии до скандинавской мифологии, от криптографии до нумизматики. Иногда для их решения достаточно находчивости и здравого смысла, но часто требуются эрудиция или короткие математические выкладки.


Чудесного холода полный сундук

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Занимательная химия для детей и взрослых

Автор этой книги, доцент химического факультета МГУ, написал ее для всех любознательных людей. "Наука начинается с удивления", – сказал Аристотель. Прочитав сей труд, вы не раз удивитесь. А заодно узнаете, как работают в автомобиле подушки безопасности, из каких металлов делают монеты разных стран, какие бывают в химии рекорды, почему лекарство может оказаться ядом, как химики разоблачают подделки старинных картин, как журнальная шутка лишила победы "знатоков" в известной телевизионной игре "Что? Где? Когда?", а также многое другое.


Язык химии. Этимология химических названий

Поскольку химия лежит в основе всего сущего, мы так или иначе сталкиваемся с ней каждый день. Мы слушаем рекомендации врачей, читаем инструкции к лекарствам, участвуем в дискуссиях о пользе или вреде продуктов питания, подбираем себе средства косметического ухода и т. д. И чем лучше мы ориентируемся в химической терминологии, тем увереннее чувствуем себя в современном мире.«Язык химии» – это справочник по этимологии химических названий, но справочник необычный. Им можно пользоваться как настоящим словарем, чтобы разобраться в происхождении и значении тех или иных терминов, в которых всегда так просто было запутаться.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.