Учитель - [10]

Шрифт
Интервал

, с которым я имею счастье быть близко знакомым в течение многих лет.

Вообще, оглядываясь на динамику кризиса оснований математики, можно заметить аналогию с событиями в литературе, искусстве. И там были различного рода реакции на романтизм, порою весьма резкие. Кого только не сбрасывали с кораблей современности. При взгляде с расстояния времени видно, что и сами такие течения (жизнеспособные, художественно значимые из них) обретали собственную романтику…



Лютцен Брауэр

В 20-м веке было три главных конструктивных направления (перечисляю их хронологически): так называемый интуиционизм, основанный голландским математиком Лютценом Брауэром (Brouwer, Luitzen Egbertus Jan 1881–1966), конструктивная математика А.А. Маркова, Мл. и конструктивная математика американского математика Эррета Бишопа (Bishop, Errett 1928–1983).

Все три конструктивных школы разделяли резкую критику платонистской онтологии теоретико-множественной математики (иногда по контрасту с новыми течениями называемой классической). Критика эта, решающая роль в формулировках которой принадлежит Брауэру, в частности отвергала идею актуальной бесконечности, неограниченной применимости законов традиционной логики, особенно закона исключённого третьего, метафизический надсубъективный статус математических объектов. Сами эти объекты рассматривались как результаты интеллектуальной или фактической деятельности человека, а не как нечто существующее вечно и само по себе. Каждое течение развило собственное мировоззрение и строило математику, следуя таковому. При многом общем, имелись существенные философские и конкретные различия. Мы не можем здесь углубляться в эту проблему. Боюсь, я уже отпугнул многих читателей, приоткрыв дверь (или, приподняв крышку ларца Пандоры?) в опасную страну Оснований Математики[51]. Скажу только ещё несколько слов о конструктивной математике Маркова.

Вероятно корни марковского конструктивного мировоззрения лежат в его опыте естествоиспытателя, тяготеющего к осязаемости получаемых результатов, и в общей независимости его личности, не готовой автоматически следовать установившимся канонам, подвергающей их анализу и отклоняющей, если каноны этого анализа не выдерживают.

Объектом изучения в марковской математике являются конструктивные объекты и конструктивные процессы, выполняемые с этими объектами. Для всех реальных целей этой математики вполне достаточно одного общего типа конструктивных объектов — слов в алфавите. При этом, разумеется, принимаются некоторые идеализирующие соглашения, коротко говоря, допускается наша способность опознавать буквы, слова как графически одинаковые или различные. Таким образом, мы можем говорить, например, о букве «а» русского алфавита, отвлекаясь от различий в реальных появлениях этого знака в словах, которые мы пишем или печатаем. Каждый, кто сталкивался с документами, написанными плохим почерком или даже просто с печатными (не говорю уж о рукописных) текстами в готике, понимает, что здесь идёт речь именно об идеализации. С другой стороны, наша способность читать, распознавать графемы лежит в самой основе интеллектуальной деятельности человека. Целые числа, очевидно, можно трактовать как слова в алфавите, который мы видим на клавиатуре нашего компьютера, то же самое можно сказать и о рациональных числах. Скажем, 2/3, очевидно, слово. О том, как распространяется этот подход на «высшую математику», можно прочесть в уже упоминавшейся (примечание 52) моей монографии.

В центре конструктивной математики Маркова находится также точное понятие алгорифма. Несколько огрубляя ситуацию, можно сказать, что алгорифмы — это компьютерные программы. Сами же компьютеры имеют возможность наращивать по мере необходимости память и потенциально не ограничены во времени выполнения программ. Точные понятия алгорифма были выработаны в математике в тридцатых годах 20-го века, и характерно, что случилось это в недрах именно оснований математики, в ходе работ по преодолению кризиса этих оснований. Андрей Андреевич включился в эту работу сразу после войны, когда и начался его «конструктивный период». Впрочем, в частных беседах А.А. говорил, что имел ясно выраженные «конструктивные» наклонности много раньше. А.А. Маркова, Мл. можно смело считать одним из пионеров теории алгорифмов и компьютерных наук, информатики (Computer Science). Им было предложено одно из ведущих современных точных понятий алгорифма (нормальные алгорифмы Маркова) и написана ставшая уже классической монография[52], содержащая первое в математической практике строгое изложение теории слов и доказательства правильности работы тех или иных алгорифмов. Помимо прочего, это предвосхищало ряд современных направлений в информатике.

Сама природа конструктивных объектов и процессов подсказывает новый подход к пониманию математических суждений. Например, существование конструктивного объекта считается установленным, если указан потенциально выполнимый способ построения этого объекта. При этом многие привычные принципы оказываются неприемлемыми. В особенности это относится к закону исключённого третьего и к косвенным методам доказательств, на нём основанных. Например, в доказательствах по хорошо знакомой схеме «от противного» существование конструктивного объекта устанавливается приведением к противоречию гипотезы, что искомый объект не существует. При этом никакого способа построения искомого объекта не предлагается, и он оказывается не осязаемым, чем-то вроде призрака. И такие призраки бродят по всей традиционной математике. Из сказанного ясно, что в конструктивной логике «быть» гораздо сильнее, чем «не может не быть». Впрочем, и в обычной речи здесь имеется явный стилистический оттенок, предложение «я выразил своё возмущение этому господину» звучит сильнее, категоричнее, чем «я не мог не выразить своего возмущения этому господину»


Еще от автора Борис Абрамович Кушнер
Успенский пишет о Колмогорове

Эти воспоминания была опубликована в Историко-математических исследованиях, Вторая серия, выпуск 1 (36), №2, Янус, Москва 1996, стр. 165 – 191. Английская версия: Memories of Mech.-Math in the Sixties, Modern Logic, Vol. 46 No. 2, April 1994, Ames, Iowa,  pp. 165 – 195 (прим. 2004 г.).


Рекомендуем почитать
Макс Вебер: жизнь на рубеже эпох

В тринадцать лет Макс Вебер штудирует труды Макиавелли и Лютера, в двадцать девять — уже профессор. В какие-то моменты он проявляет себя как рьяный националист, но в то же время с интересом знакомится с «американским образом жизни». Макс Вебер (1864-1920) — это не только один из самых влиятельных мыслителей модерна, но и невероятно яркая, противоречивая фигура духовной жизни Германии конца XIX — начала XX веков. Он страдает типичной для своей эпохи «нервной болезнью», работает как одержимый, но ни одну книгу не дописывает до конца.


Точка отсчёта

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


История Жака Казановы де Сейнгальт. Том 11

«Я вхожу в зал с прекрасной донной Игнасией, мы делаем там несколько туров, мы встречаем всюду стражу из солдат с примкнутыми к ружьям штыками, которые везде прогуливаются медленными шагами, чтобы быть готовыми задержать тех, кто нарушает мир ссорами. Мы танцуем до десяти часов менуэты и контрдансы, затем идем ужинать, сохраняя оба молчание, она – чтобы не внушить мне, быть может, желание отнестись к ней неуважительно, я – потому что, очень плохо говоря по-испански, не знаю, что ей сказать. После ужина я иду в ложу, где должен повидаться с Пишоной, и вижу там только незнакомые маски.


История Жака Казановы де Сейнгальт. Том 8

«В десять часов утра, освеженный приятным чувством, что снова оказался в этом Париже, таком несовершенном, но таком пленительном, так что ни один другой город в мире не может соперничать с ним в праве называться Городом, я отправился к моей дорогой м-м д’Юрфэ, которая встретила меня с распростертыми объятиями. Она мне сказала, что молодой д’Аранда чувствует себя хорошо, и что если я хочу, она пригласит его обедать с нами завтра. Я сказал, что мне это будет приятно, затем заверил ее, что операция, в результате которой она должна возродиться в облике мужчины, будет осуществлена тот час же, как Керилинт, один из трех повелителей розенкрейцеров, выйдет из подземелий инквизиции Лиссабона…».


История Жака Казановы де Сейнгальт. Том 5

«Я увидел на холме в пятидесяти шагах от меня пастуха, сопровождавшего стадо из десяти-двенадцати овец, и обратился к нему, чтобы узнать интересующие меня сведения. Я спросил у него, как называется эта деревня, и он ответил, что я нахожусь в Валь-де-Пьядене, что меня удивило из-за длины пути, который я проделал. Я спроси, как зовут хозяев пяти-шести домов, видневшихся вблизи, и обнаружил, что все те, кого он мне назвал, мне знакомы, но я не могу к ним зайти, чтобы не навлечь на них своим появлением неприятности.


История Жака Казановы де Сейнгальт. Том 4

«Что касается причины предписания моему дорогому соучастнику покинуть пределы Республики, это не была игра, потому что Государственные инквизиторы располагали множеством средств, когда хотели полностью очистить государство от игроков. Причина его изгнания, однако, была другая, и чрезвычайная.Знатный венецианец из семьи Гритти по прозвищу Сгомбро (Макрель) влюбился в этого человека противоестественным образом и тот, то ли ради смеха, то ли по склонности, не был к нему жесток. Великий вред состоял в том, что эта монструозная любовь проявлялась публично.