Учение логики о доказательстве и опровержении - [8]

Шрифт
Интервал

Определение понятий необходимо, так как оно — и только оно — даёт возможность во всех рассуждениях, посредством которых в доказательстве совершается переход от доказанного к доказываемому, мыслить входящие в эти рассуждения основные понятия науки в одном и том же содержании и, таким образом, мыслить посредством этих понятий одни и те же предметы.

Наличие определений в составе оснований не значит, однако, будто все определения, необходимые для данного доказательства, непременно формулируются в самом данном доказательстве. Обычно определения формулируются не в каждом данном доказательстве, а в начале изложения науки или, по крайней мере, того раздела науки, к которому относится данное доказательство. Так, в «Началах» Евклида определениями основных понятий начинается каждая книга этого труда. При этом определения в каждой следующей книге новые и не повторяют определений, данных в предыдущих книгах. Но, не появляясь вновь в каждом данном доказательстве, определения понятий, необходимые для точного проведения данного доказательства, непременно им предполагаются и всегда могут быть найдены в соответствующем месте изложения.

Однако из того, что в число оснований, общих для всех доказательств данной науки, входят определения основных понятий данной науки, ещё не следует, будто определению подлежат все без исключения понятия данной науки. И действительно: определить — значит свести неизвестное к известному, сложное к простому. Но есть предметы настолько простые и настолько всем известные, что определить понятия об этих предметах невозможно. Всякая попытка такого определения приводит или к тому, что в определяющем повторяется определяемое (круг в определении), или к тому, что до определения понятное и ясное после определения становится непонятным и неясным.

Таким образом, задача науки в отношении определения понятий, входящих в основания доказательства, состоит в том, чтобы избежать двух противоположных ошибок: 1) не оставить не определёнными те понятия, которые должны быть определены, и 2) не пытаться понапрасну определять те понятия, которые по своей крайней простоте не могут быть определены.

Это правильное понимание задачи определения оснований доказательства хорошо сформулировал Паскаль. В небольшой работе «О геометрическом уме» (De l’esprit géométrique) Паскаль писал: «... порядок, совершеннейший у людей, состоит не в том, чтобы всё определять и всё доказывать, и не в том также, чтобы ничего не определять и ничего не доказывать; но в том, чтобы, держась среднего пути, не определять вещей, ясных и понятных всем людям, но определять все остальные, и не доказывать всех вещей, известных людям, но доказывать все остальные»[15].

Поэтому число определений, входящих в основания доказательств данной науки и формулируемых в начале её изложения, обычно бывает невелико и без нужды не должно быть увеличиваемо.

в) Аксиомы и постулаты как основания доказательства

Положения об удостоверенных фактах и определения входят в число оснований самых различных наук: естественных и общественных.

В математике, механике и теоретической физике кроме определений и удостоверенных фактов в число оснований доказательства входят ещё аксиомы, или постулаты. Так называются положения, которые предполагаются истинными, но в пределах каждой науки в качестве истинных не доказываются.

Так, доказательство теоремы евклидовой геометрии о равенстве суммы внутренних углов плоского треугольника двум прямым опирается не только на ранее доказанную теорему о равенстве суммы двух смежных углов двум прямым, но, кроме того, на теоремы о свойствах внутренних накрест лежащих и соответственных углов, которые в свою очередь опираются на положение, согласно которому через данную точку вне данной прямой в одной с ней плоскости можно провести одну — и притом только одну — прямую, которая ни при каком продолжении её в обе стороны от данной точки не пересечётся с данной прямой. Положение это уже не теорема, а аксиома (постулат). В «Началах» Евклида оно дано (в редакции, отличающейся от приведённой в тексте) в качестве 11-й аксиомы первой книги[16].

Аксиомой (постулатом) это положение является потому, что в «Началах» Евклида оно принимается без доказательства. И действительно: положение это утверждает, что возможно неограниченно продолжить прямую так, чтобы последняя нигде не пересекалась с данной прямой. Но совершенно очевидно, что утверждение это не может быть проверено или доказано: как бы далеко мы ни продолжали прямую, продолжение её будет для нашего наглядного представления ограниченным. В лучшем случае можно сказать, что в тех пределах, в каких прямая продолжена нами, она сохраняет параллельность данной прямой. Но сохранит ли она параллельность и при дальнейшем, ещё нами не воспринятом неограниченном её продолжении,— это остаётся недоказанным.

Аристотель, создавший не только науку логики в целом, но и разработавший, в частности, логическое учение о доказательстве, отличал аксиомы от другого вида недоказываемых наукой положений — от постулатов. Под аксиомами (αρώματα) он разумел такие недоказываемые в данной науке положения, которые в сравнении с другими недоказываемыми положениями являются, во-первых, наиболее общими и, во-вторых, представляют необходимое условие доказательства. Так, в «Метафизике» (кн. III, гл. 2, 997а 5—13) Аристотель говорит, что «не может существовать доказательства для всего», что «все доказывающие науки применяют аксиомы» и что «аксиомы обладают наивысшей степенью общности и представляют начала всего» (Κάρολου γαρ μάλιστα αι πάντων άρΧαι τα αξιώματα έστιν).


Еще от автора Валентин Фердинандович Асмус
Логика

Книга использует формат FB вер. 2.1. Для полноценного воспроизведения содержимого (текст содержит таблицы) надо использовать программы чтения, поддерживающие этот формат. Это могут быть CoolReader3, FB2Edit (в режиме чтения) и др.Предлагаемая книга представляет систематическое изложение учений логики. Она может быть использована студентами высших учебных заведений, аспирантами научно-исследовательских институтов и лицами, приступающими к самостоятельному изучению логики. Преподаватели логики в средней школе найдут в ней подробное освещение вопросов, входящих в программу их предмета, но лишь кратко излагаемых в учебниках логики для старшего класса.


Платон

Книга проф. В. Ф. Асмуса посвящена жизни и творчеству одного из величайших мыслителей древности — Платона. Автор анализирует теорию познания Платона, его космологические идеи, учение об обществе и государстве, наглядно и выпукло прослеживая «анатомию» идеалистической мысли, которая воплощена в диалогах Платона. Вскрывая идейные истоки платоновского идеализма, автор показывает эволюцию мировоззрения Платона, его влияние на философию античности и на последующее развитие философии.


Диалектика необходимости и свободы в философии истории Гегеля

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Античная философия

В работе выдающегося отечественного историка философии подробно рассматривается развитие античной философии от периода становления (милетская и пифагорейская школы) к взлету высокой классики (Сократ, Платон, Аристотель) и далее к учениям эпохи эллинизма (стоицизм, скептицизм, эпикуреизм). Завершает исследование обзор эволюции неоплатонизма, оказавшего особое влияние на становление христианской патристики.


Рекомендуем почитать
Искусство феноменологии

Верно ли, что речь, обращенная к другому – рассказ о себе, исповедь, обещание и прощение, – может преобразить человека? Как и когда из безличных социальных и смысловых структур возникает субъект, способный взять на себя ответственность? Можно ли представить себе радикальную трансформацию субъекта не только перед лицом другого человека, но и перед лицом искусства или в работе философа? Книга А. В. Ямпольской «Искусство феноменологии» приглашает читателей к диалогу с мыслителями, художниками и поэтами – Деррида, Кандинским, Арендт, Шкловским, Рикером, Данте – и конечно же с Эдмундом Гуссерлем.


Сомневайся во всем. С комментариями и иллюстрациями

Рене Декарт – выдающийся математик, физик и физиолог. До сих пор мы используем созданную им математическую символику, а его система координат отражает интуитивное представление человека эпохи Нового времени о бесконечном пространстве. Но прежде всего Декарт – философ, предложивший метод радикального сомнения для решения вопроса о познании мира. В «Правилах для руководства ума» он пытается доказать, что результатом любого научного занятия является особое направление ума, и указывает способ достижения истинного знания.


Полное собрание сочинений. Том 45. Март 1922 ~ март 1923

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Полное собрание сочинений. Том 43. (Март ~ июнь 1921)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Актуальность сложности. Вероятность и моделирование динамических систем

Исследуется проблема сложности в контексте разработки принципов моделирования динамических систем. Применяется авторский метод двойной рефлексии. Дается современная характеристика вероятностных и статистических систем. Определяются общеметодологические основания неодетерминизма. Раскрывается его связь с решением задач общей теории систем. Эксплицируется историко-научный контекст разработки проблемы сложности.


Марксизм: испытание будущим

Глобальный кризис вновь пробудил во всем мире интерес к «Капиталу» Маркса и марксизму. В этой связи, в книге известного философа, политолога и публициста Б. Ф. Славина рассматриваются наиболее дискуссионные и малоизученные вопросы марксизма, связанные с трактовкой Марксом его социального идеала, пониманием им мировой истории, роли в ней «русской общины», революции и рабочего движения. За свои идеи классики марксизма часто подвергались жесткой критике со стороны буржуазных идеологов, которые и сегодня противопоставляют не только взгляды молодого и зрелого Маркса, но и целые труды Маркса и Энгельса, Маркса и Ленина, прошлых и современных их последователей.