Учебное пособие по курсу «Нейроинформатика» - [52]

Шрифт
Интервал

D=F({1,…,M},{1,…,M})

Очевидно, что косвенный супердубль является полным косвенным дублем второго рода. Также очевидно, что косвенный супердубль встречается гораздо реже, чем наиболее редкий из ранее рассматриваемых косвенный дубль первого рода.

Процедура контрастирования

Существует два типа процедуры контрастирования — контрастирование по значимости параметров и не ухудшающее контрастирование. В данном разделе описаны оба типа процедуры контрастирования.

Контрастирование на основе показателей значимости

С помощью этой процедуры можно контрастировать, как входные сигналы, так и параметры сети. Далее в данном разделе будем предполагать, что контрастируются параметры сети. При контрастировании входных сигналов процедура остается той же, но вместо показателей значимости параметров сети используются показатели значимости входных сигналов. Обозначим через Χ>p — показатель значимости p-о параметра; через w>0>p — текущее значение p-о параметра; через w>•>p — ближайшее выделенное значение для p-о параметра.

Используя введенные обозначения процедуру контрастирования можно записать следующим образом:

1. Вычисляем показатели значимости.

2. Находим минимальный среди показателей значимости — Χ>p'.

3. Заменим соответствующий этому показателю значимости параметр w>0>pна w>•>p, и исключаем его из процедуры обучения.

4. Предъявим сети все примеры обучающего множества. Если сеть не допустила ни одной ошибки, то переходим ко второму шагу процедуры.

5. Пытаемся обучить полученную сеть. Если сеть обучилась безошибочному решению задачи, то переходим к первому шагу процедуры, в противном случае переходим к шестому шагу.

6. Восстанавливаем сеть в состояние до последнего выполнения третьего шага. Если в ходе выполнения шагов со второго по пятый был отконтрастирован хотя бы один параметр, (число обучаемых параметров изменилось), то переходим к первому шагу. Если ни один параметр не был отконтрастирован, то получена минимальная сеть.

Возможно использование различных обобщений этой процедуры. Например, контрастировать за один шаг процедуры не один параметр, а заданное пользователем число параметров. Наиболее радикальная процедура состоит в контрастировании половины параметров связей. Если контрастирование половины параметров не удается, то пытаемся контрастировать четверть и т. д. Другие варианты обобщения процедуры контрастирования будут описаны при описании решения задач. Результаты первых работ по контрастированию нейронных сетей с помощью описанной процедуры опубликованы в [47, 303, 304].

Контрастирование без ухудшения

Пусть нам дана только обученная нейронная сеть и обучающее множество. Допустим, что вид функции оценки и процедура обучения нейронной сети неизвестны. В этом случае так же возможно контрастирование сети. Предположим, что данная сеть идеально решает задачу. В этом случае возможно контрастирование сети даже при отсутствии обучающей выборки, поскольку ее можно сгенерировать используя сеть для получения ответов. Задача не ухудшающего контрастирования ставится следующим образом: необходимо так провести контрастирование параметров, чтобы выходные сигналы сети при решении всех примеров изменились не более чем на заданную величину. Для решения задача редуцируется на отдельный адаптивный сумматор: необходимо так изменить параметры, чтобы выходной сигнал адаптивного сумматора при решении каждого примера изменился не более чем на заданную величину.

Обозначим через x>q>p p-й входной сигнал сумматора при решении q-о примера; через f>q — выходной сигнал сумматора при решении q-о примера; через w>p — вес p-о входного сигнала сумматора; через ε — требуемую точность; через n — число входных сигналов сумматора; через m — число примеров. Очевидно, что при решении примера выполняется равенство

Требуется найти такой набор индексов I={i>1,…,i>k}, что

где α>p — новый вес p-о входного сигнала сумматора. Набор индексов будем строить по следующему алгоритму.

1. Положим f>(0)=f, x>•>p=x>p, I>(0)=∅, J>(0)={1,…,n}, k =0.

2. Для всех векторов x>•>p таких, что pJ>(k), проделаем следующее преобразование: если , то исключаем p из множества обрабатываемых векторов — J>(k)=J>(k)/{p}, в противном случае нормируем вектор x>•>p на единичную длину — .

3. Если или J>(0)=∅, то переходим к шагу 10.

4. Находим i>k>+1 — номер вектора, наиболее близкого к f>(k) из условия

5. Исключаем i>k>+1 из множества индексов обрабатываемых векторов: J>(k+1)=J>(k)/{i>k>+1}.

6. Добавляем i>k>+1  в множество индексов найденных векторов: I>(k+1)=I>(k)∪{i>k>+1}.

7. Вычисляем не аппроксимированную часть (ошибку аппроксимации) вектора выходных сигналов: .

8. Преобразуем обрабатываемые вектора к промежуточному представлению — ортогонализуем их к вектору , для чего каждый вектор x>p>(k), у которого pJ>(k) преобразуем по следующей формуле: .

9. Увеличиваем k на единицу и переходим к шагу 2.

10. Если k=0, то весь сумматор удаляется из сети и работа алгоритма завершается.

11. Если k=n+1, то контрастирование невозможно и сумматор остается неизменным.

12. В противном случае полагаем I=I>(k) и вычисляем новые веса связей α>p(pI) решая систему уравнений

13. Удаляем из сети связи с номерами


Рекомендуем почитать
Юрий Гагарин. Первый полёт в документах и воспоминаниях

12 апреля 1961 года — самая светлая дата в истории XX века. В тот день советский летчик Юрий Алексеевич Гагарин обогнул Землю на космическом корабле «Восток», открыв человечеству дорогу к звездам. Биография первого космонавта и его орбитальный рейс хорошо изучены, однако за минувшие десятилетия они обросли множеством мифов. Правдивые воспоминания очевидцев и новейшие рассекреченные документы, собранные в этой книге, позволяют вернуть историческую правду. Они наглядно показывают, сколь значительные трудности пришлось преодолеть Юрию Гагарину на пути к заветной цели.


Электричество в 2000 году

Статья, дающая смелый прогноз развития электротехники, транспорта, энергетики на 70 лет вперед. Напечатана 15 февраля 1927 года в газете "Харьковский пролетарий". Перевод с французского.


Часы и время

Что такое время? Странный вопрос. Ведь это каждый знает. Все только и говорят о нем. «Катастрофически не хватает времени», — жалуются одни. «Как медленно течет время», — говорят другие, когда приходится чего-то или кого-то ждать. То и дело можно слышать вопрос: «Который час?» или (что не очень правильно) «Сколько сейчас времени?»А между тем еще в древности один философ сказал: «Я прекрасно знаю, что такое время, пока не задумываюсь об этом. Но стоит мне задуматься, и я не могу ответить».С тех пор как были сказаны эти слова, прошло много лет, но до сих пор далеко не все тайны времени разгаданы.


Беседы о физике и технике

В книге рассмотрены последние достижения физики и их применения в ряде отраслей современного производства, приборостроения, в электронике, связи, транспорте и медицине. Изложены физические основы мембранной технологии, перспективы использования солитонов и другие вопросы. Книга предназначена для дополнительного чтения по физике в средних специальных учебных заведениях. Может быть полезна учителям физики и учащимся школ и профтехучилищ.


"Наутилусы" наших дней

Очерк преподавателя Военно-морской академии Алексея Травиничева, в котором сравнивается "Наутилус" Жюля Верна с реальными подводными судами начала ХХ века. Помимо оценки эффективности действия подводных лодок в реальных боевых ситуациях и тактико-технических характеристик новейших субмарин, оценивается их возможное применение для научно-исследовательской работы в океане…


Технический регламент о требованиях пожарной безопасности. Федеральный закон № 123-ФЗ от 22 июля 2008 г.

Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.