Творения рук человеческих (Естественная история машин) - [45]

Шрифт
Интервал

Идеи Карно оказались плодотворными, и на протяжении первой половины прошлого века шли более или менее успешные поиски двигателей, работающих на газе. Одним из первых эту задачу решил французский изобретатель Этьенн Ленуар, который в 1857 г. построил двигатель, работавший на светильном газе. Затем в 1876 г. немецкий конструктор Николаус Отто построил двигатель внутреннего сгорания, и двигатели подобного типа, работавшие на нефти, керосине и бензине, быстро распространились: они нашли применение как в промышленности, так и на транспорте — в автомобилях, а затем и в самолетах.

Двигатели Отто не допускали высокого сжатия. Чтобы добитьс^ этого и поднять коэффициент полезного действия, немецкий инженер Рудольф Дизель в 1897 г. создал четырехтактный двигатель (названный его именем), который работал по другому принципу: в течение первого такта в цилиндр всасывался воздух, за второй он сжимался и нагревался. В конце второго такта в камеру сжатия поступало через форсунку распыленное горючее, третий такт был рабочим; в течение последнего (четвертого) такта продукты сгорания выбрасывались в атмосферу.

Так появился новый тип двигателя, при этом новое устройство полностью вписалось в старую форму кривошипно-ползунного механизма. Но в том же самом веке новые формы приобрел вращательный механизм. Его основной формой, с одной стороны, стала турбина, с другой — динамо-машина и электромотор.

Напомним, что первые научные исследования электрического тока относятся к тому времени, когда итальянский физик и физиолог Алессандро Вольта изобрел источник постоянного тока «вольтов столб», тем самым было положено начало исследованиям электричества как нового источника энергии. Основой развития электротехники стала электромагнитная теория, которую разработал английский ученый Джеймс Клерк Максвелл. В середине прошлого века начинаются поиски электрогенератора, т. е. машины для производств электрического тока. В 1869 г. бельгийский инженер Зеноб Грамм изобрел генератор постоянного тока с кольцевым якорем. Эта машина претерпела ряд улучшений, и к 80-м годам века проблема генератора была решена.

Следующим этапом были поиски возможности передачи электротока на расстояние. Русский инженер Михаил Осипович Доливо-Добровольский предложил применять для передачи электрической энергии трехфазный ток. Он же построил первый асинхронный двигатель трехфазного тока и в 1891 г. на выставке во Франкфур.те-на-Майне передал электроэнергию на расстояние около 170 км.

Эти новые возможности, открывшиеся перед техникой, в частности перед машиностроением, повлекли за собой новое направление в промышленности. Повсеместно начали строить «фабрики» электроэнергии — электростанции. Исходным рабочим телом на последних были пар или вода, приводившие во вращение паровую или водяную турбину, с которой был соединен электрогенератор. Впрочем, в небольших электростанциях роль первичного двигателя исполняла паровая машина, а спустя несколько десятилетий — нефтяной или керосиновый двигатель. Выработанная с помощью генератора энергия передавалась на место потребления к системе электродвигателей. Это дало возможность подвести энергию к каждой рабочей машине, и цехи производственных предприятий освободились от леса ременных передач, которые к тому же были источниками производственных травм.

Таким образом, человечество вступило в новый век, располагая для приведения машин в действие энергией ветра, воды, тепла и электричества. Эти виды энергии могут действовать, не только поступая извне, но и образуясь в результате работы соответствующего рабочего тела в самой машине. Изучаемые издавна гидравлика и пневматика легли в основу создания новых механизмов, входящих в кинематический скелет машины. Электрические, электромагнитные и электронные приборы также вошли в состав машин, кроме того,  электродвигатели, которые вначале устанавливались около машины и приводили ее в движение с помощью все того же ременного привода, затем начали входить в состав машины и в конце концов составили ее интегральные части.

К сожалению, не вся энергия, получаемая машиной, идет на выполнение некоторой полезной работы, для оценки которой, как известно, служит коэффициент полезного действия (равный отношению количества полученной работы к количеству затраченной и всегда меньший единицы). Но куда же девается та работа, которая равна разности между всей затраченной работой и той, которая получена и пошла в дело? Оказывается, энергия уходит по многим каналам. Так, в тепловых машинах не все тепло используется по своему назначению: весьма значительная часть его уходит в атмосферу через стенки машины или с отходящими газами. Таким образом, машина не только «отопляет атмосферу», но и наносит ей вред, не всегда поправимый.

Транспортные машины — поезда, автомашины, самолеты, корабли — в процессе своего движения испытывают сопротивление среды (будь то воздух или вода). Для снижения потерь на сопротивление среды транспортным машинам придают обтекаемую форму. Не случайно наилучшую в мире форму крыла первых отечественных самолетов удалось найти только после того, как наряду с теоретическими расчетами были проведены и практические испытания его обтекаемости потоком воздуха, поступающего в специально построенную для этого аэродинамическую трубу.


Рекомендуем почитать
Юный техник, 2013 № 11

Популярный детский и юношеский журнал.


Современная архитектура Японии. Традиции восприятия пространства

Япония отличается особым отношением к традиционным ценностям своей культуры. Понимание механизмов актуализации и развития традиций, которыми пользуется Япония, может открыть новые способы сохранения устойчивости культуры, что становится в настоящее время все более актуальной проблемой для многих стран мира. В качестве центральных категорий, составляющих основу пространственного восприятия архитектуры в Японии, выделяется триада: пустота, промежуток, тень. Эти категории можно считать инвариантами культуры этой страны, т. к.


В поисках марсианских сокровищ и приключений

«Новый Марс» — это проект жизни на Марсе через 200 лет. Вторая книга, которая окажется на Марсе. Первая — «Будущее освоение Марса, или Заповедник „Земля“». «Новый Марс» включает в себя 2 части: «Марсианская практика в лето 2210» и «В поисках марсианских сокровищ и приключений». Перед вами продолжение художественной повести с далеко ведущей целью: превращение планеты Земля в ядро глобального галактического Заповедника!


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


Юный техник, 2001 № 08

Популярный детский и юношеский журнал.


6000 изобретений XX и XXI веков, изменившие мир

Данное издание представляет собой энциклопедию изобретений и инноваций, сделанных в XX и XXI веках. Точные даты, имена ученых и новаторов и названия изобретений дадут полное представление о том, какой огромный скачок человечество сделало за 110 лет. В этой энциклопедии читатель найдет год и имя изобретателя практически любой вещи, определившей привычный бытовой уклад современного человека. В статьях от «конвейерного автомобилестроения» до «фторографен» раскрыты тайны изобретений таких вещей, как боксерские шорты, памперсы, плюшевый медвежонок, целлофан, шариковый дезодорант, титан, акваланг, компьютерная мышь и многое другое, без чего просто немыслима сегодняшняя жизнь.Все изобретения, сделанные в период с 1901 по 2010 год, отсортированы по десятилетиям, годам и расположены в алфавитном порядке, что делает поиск интересующей статьи очень легким и быстрым.