Трехмерный мир. Евклид. Геометрия - [33]

Шрифт
Интервал

- 1) x S . Сумма двух результатов — Р>n = S>n + (2n- 1) х S>n = 2>n х S>n = 2>n х (2>n + 1 - 1). Ч. Т. Д.


Первые примеры

В «Арифметике» Никомах Герасский устанавливает, что совершенными числами являются 6,28,496 и 8126. Из этого он делает следующие выводы.

1. Совершенные числа (четные) оканчиваются на 6 и 8 (верно).

2.Они чередуются (неверно).

3.Существует одно совершенное число на каждый десятичный порядок — среди единиц, десятков, сотен, тысяч и так далее (неверно).

В XVIII веке Эйлер доказал теорему, взаимодополняющую теорему Евклида: каждое совершенное число (четное) имеет вид 2>n х (2>n+1-1), где 2>n+1-1 — простое число. На сегодняшний день все еще существуют нерешенные вопросы относительно совершенных чисел: неизвестно, бесконечен ли их ряд и существуют ли совершенные нечетные числа.



Начнем с последовательности нечетных чисел.

357911131517192123252729313335
3739414345474951535557596163656769
717375777981838587899193959799101103

Начиная с 3 уберем третьи числа через каждые два.

357 1113 1719 2325 2931 35
37 4143 4749 5355 5961 6567 
7173 7779 8385 8991 9597 101103

Начиная с 5 уберем пятые числа через каждые пять и получим следующее.

357 1113 1719 23  2931  
37 4143 4749 53  5961  67 
7173 7779 83  8991  97 101103

И так далее. Вот список простых чисел до тысячи.

23571113171923293137414347
53596167717379838997101103107109113
127131137139149151157163167173179181191193197
199211223227229233239241251257263269271277281
283293307311313317331337347349353359367373379
383389397401409419421431433439443449457461463
467479487491499503509521523541547557563569571
577587593599601607613617619631641643647653659
661673677683691701709719727733739743751757761
769773787797809811821823827829839853857859863
877881883887907911919929937941947953967971977
983991997 

ПИФАГОРОВА ТРОЙКА

Последняя задача, которую стоит разобрать, — это алгоритм получения пифагоровых троек — трех натуральных чисел, подтверждающих теорему Пифагора, например 3, 4, 5; 5, 12, 13 и так далее, то есть таких чисел a, b и с, при которых а>2 + b>2 = с>2.

Возможно, в Древнем Вавилоне знали метод нахождения пифагоровых троек, о чем свидетельствует вавилонская глиняная табличка, которую называют Plimpton 322. В ней содержится несколько троек, выраженных в шестидесятых долях. Пифагору приписывается авторство метода, позволяющего получить эти числа, основанного на гномоне квадратных чисел. Квадратное число — это то, которое можно выразить в виде квадрата (см. рисунок). Следовательно, мы имеем n + (2n + 1) = (n+1). Для того чтобы составить пифагорову тройку, в которой катет и гипотенуза — два последовательных числа, гномон тоже должен быть квадратом, то есть 2n + 1 = k, где k — нечетное число. Следовательно,

n = (k² - 1)/2, k нечетное.

Так можно получить тройки n = (k² - 1)/2, k, n +1 = (k² + 1)/2,

где k — нечетное число, образующее следующие таблицы.

Последовательность квадратных чисел 1, 4, 9,16 (n - 1), n. Чтобы перейти от c>n = n к c>n + 1 = (n + 1), нужно добавить гномон, равный 2n +1. То есть между ними всегда будет нечетное число.

a = k, где k нечетное3579111315 ...
b = n = n = (k² - 1)/241224406084112...
c = n + 1 = n = (k² + 1)/251325416185113...

Таким образом можно получить бесконечное множество троек, но не все: например, здесь не хватает тройки 8, 15, 17, в которой разница между катетом и гипотенузой равна двум единицам.

Платону приписывают обобщение этого метода Пифагора. Необходимо перейти от (n - 1) к (n + 1). Для этого надо сложить два гномона: 2n - 1, позволяющий перейти от (n - 1) к n, и 2n + 1, позволяющий перейти от n к (n + 1). Всего надо добавить 4n. То есть (n - 1) + 4n = (n + 1). Значит, n должно быть квадратным числом: n = k. Так мы получаем тройки k - 1, 2k и k + 1. При k = 4 мы получим уже упомянутую тройку 8,15,17. Запишем это в виде таблицы.

k2345678 
a = k²- 1381524354863 
b = 2k46810121416 
с = k² +15101726375065 

Приведенные таблицы различаются: в первой представлены простые тройки, то есть такие, у которых нет общего делителя; во второй цифры в столбцах с нечетным к можно разделить на 2, и мы получим некоторые значения первой таблицы. Можно сказать, что первая таблица включена во вторую. Но существует ли алгоритм, позволяющий получить все возможные пифагоровы тройки? Ответ на этот вопрос положительный, и дает его сам Евклид в лемме 1 книги X:

Существуют два квадратных числа, которые вместе образуют еще один квадрат.

Не вдаваясь в подробности, скажем, что Евклид использовал алгоритм α = λ, b = 2λμ, c = λ + μ, где λ и μ — взаимно простые числа, имеющие разную четность. Это условие необходимо соблюдать для того, чтобы тройки не повторялись и все составляющие их числа были простыми, без общих делителей. Действительно, нас интересуют только простые тройки, так как очевидно, что при любом натуральном числе k 3k, 4k, 5k тоже будут натуральными, ведь 3, 4 и 5 — натуральные. Все вышесказанное справедливо для любой пифагоровой тройки a, b, c.


ГЛАВА 8

Распространение «Начал»

Самым убедительным доказательством исторического значения труда Евклида являются многочисленные его копии и переиздания. Ни одно другое научное произведение античности не может похвастаться таким количеством переводов, изданий и комментариев.


Рекомендуем почитать
Физике становится тепло. Лорд Кельвин. Классическая термодинамика

Под именем лорда Кельвина вошел в историю британский ученый XIX века Уильям Томсон, один из создателей экспериментальной физики. Больше всего он запомнился своими работами по классической термодинамике, особенно касающимися введения в науку абсолютной температурной шкалы. Лорд Кельвин сделал вклад в развитие таких областей, как астрофизика, механика жидкостей и инженерное дело, он участвовал в прокладывании первого подводного телеграфного кабеля, связавшего Европу и Америку, а также в научных и философских дебатах об определении возраста Земли.


Знание-сила, 2008 № 06 (972)

Ежемесячный научно-популярный и научно-художественный журнал.


Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.