Трехмерный мир. Евклид. Геометрия - [32]

Шрифт
Интервал


АЛГОРИТМ ЕВКЛИДА В ДЕЙСТВИИ

Книга VII, предложение 17. Если число, умножая два числа, производит нечто, то возникающие из них будут иметь то же самое отношение, что и умножаемые [коммутативное свойство результата].

Книга VII, предложение 18. Если два числа, умножая некоторое число, производят нечто, то возникающие из них: будут иметь то же самое отношение, что и умножающие.

Книга VII, предложение 19. m/n = p/q, только если m х q = n х p.

Книга VII, предложение 20. Числа, наименьшие из имеющих то же самое отношение с ними, равное число раз измеряют имеющие то же самое отношение числа, причем большее измеряет большее, а меньшее — меньшее.

Книга VII, предложение 24. Если (p,m) = 1 , то (p,m х n) = 1.

Книга VII, предложение 29. Если p — первое число, не являющееся частью n, то (p,n) = 1.

Книга VII, предложение 30. Если р — первое число и делитель m х n, то p — часть одного из множителей m и n.

Книга VII, предложение 31. Всякое составное число измеряется каким-то простым числом.

Книга VII, предложение 32. Всякое число или простое, или измеряется каким-то простым числом.

Книга IX, предложение 14. Если число будет наименьшим измеряемым данными простыми числами, то оно не измерится никаким иным простым числом, кроме первоначально измерявших его.

Книга IX, предложение 20. Простых чисел существует больше всякого предложенного количества простых чисел.

В доказательстве 31 книги X Евклид пользуется подразумевающимся постулатом. Он рассуждает следующим образом: пусть N— составное число, тогда его делителем (его частью) будет N’< N. Предположим, что это не простое число. Значит, оно, в свою очередь, составное и имеет делитель (часть) N" < Ν' < N и так далее. Невозможно, что не найдется никакого простого числа Р, потому что в противном случае у нас будет бесконечная последовательность... <Ν>n< ... < Ν"< Ν'< Ν. Согласно Евклиду, это невозможно. Таким образом, он постулирует невозможность убывающей последовательности первых чисел.


Бог создал целые числа, все остальное — дело рук человека.

Леопольд Кронекер (1823-1891)


Пьер де Ферма впоследствии назвал это свойство методом бесконечного спуска и достиг с его помощью важнейших результатов, приведших к возрождению арифметики.

Предложение 14 книги IX иногда называют основной теоремой арифметики (каждое целое число больше 1 или простое, или может быть записано в виде произведения простых чисел), выраженной математическим языком той эпохи. Чтобы утверждать это с полным правом, нам нужно знать, отличаются эти простые числа или могут быть равны. Во втором случае мы получим основную теорему.


БЕСКОНЕЧНОСТЬ ПРОСТЫХ ЧИСЕЛ

В предыдущих главах мы говорили об ограничениях, наложенных Аристотелем на использование понятия бесконечности. В предложении 20 книги IX {«Простых чисел существует больше всякого предложенного количества простых чисел») Евклид соблюдает это ограничение и проявляет большую осторожность, чтобы не сказать о «бесконечном ряде простых чисел». И тем не менее существует ли алгоритм, позволяющий получать все больше и больше простых чисел? Евклид ничего не говорил по этому поводу. Лишь позже, в «Арифметике» Никомаха Герасского (ок. 60 — ок. 120) рассказывается о решете Эратосфена — методе, названном по имени изобретшего его математика:


«Способ получения всех этих чисел Эратосфен назвал решетом, потому что здесь сначала берутся нечетные числа, все вместе и без различий между ними, а затем этим производящим методом отделяются, как посредством решета, первичные числа от составных. Способ решета состоит в следующем. Начинают с тройки, а потом располагают в ряд все числа, кратные трем, пропуская два числа через каждые три и убирая третье. Потом переходят к первому оставшемуся числу, пятерке; пропускают четыре числа и убирают пятое; затем то же проделывают с семеркой, и так дальше, начиная всякий раз с первого неубранного числа».


СОВЕРШЕННЫЕ ЧИСЛА

Хотя Евклид и дал правильное определение простых чисел, а также теорему, чтобы породить совершенные числа, он не снабдил ее никаким примером. Соответствующее предложение может показаться неясным, возможно потому что оно представлено в описательной форме.

Книга IX, предложение 36. Если от единицы откладывается сколько угодно последовательно пропорциональных чисел в двойном отношении до тех пор, пока вся их сумма не станет первым числом, [...] то возникающее число будет совершенным.

Евклид имеет в виду следующее:

Если 1,2, 2>2, 2>3, ..., 2>n последовательно удваивать, то их сумма будет

S>n=1 + 2 + 2>2 + 2>3+...+ 2>n = 2>n+1 -1; если S>n — простое число, то Р>n = 2>n x S>n = 2>nx(2>n+1-1) — совершенное число (четное).

Евклиду удалось получить этот результат, потому что в предложении 35 книги IX он уже дал формулу, необходимую для сложения чисел из последовательности 1, 2, 2>2, 2>3, ..., 2>n. Он также обратил внимание, что единственные рассмотренные делители Р, 1, 2, 2>2, 2>3,..., 2>n и S>n, 2 х S>n, 2>2 х S>n, 2>3 x S>n,..., 2>n-1 x S>n. Он сложил их и получил результат теоремы: сумму делителей 1, 2, 2>2, 2>3, ..., 2>n,

равную S>n = 2>n + 1 - 1, и сумму делителей S>n, 2 x S ,2>2 x S ,2>3 x S ,..., 2>n-1 x S и (2


Рекомендуем почитать
Физике становится тепло. Лорд Кельвин. Классическая термодинамика

Под именем лорда Кельвина вошел в историю британский ученый XIX века Уильям Томсон, один из создателей экспериментальной физики. Больше всего он запомнился своими работами по классической термодинамике, особенно касающимися введения в науку абсолютной температурной шкалы. Лорд Кельвин сделал вклад в развитие таких областей, как астрофизика, механика жидкостей и инженерное дело, он участвовал в прокладывании первого подводного телеграфного кабеля, связавшего Европу и Америку, а также в научных и философских дебатах об определении возраста Земли.


Знание-сила, 2008 № 06 (972)

Ежемесячный научно-популярный и научно-художественный журнал.


Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.