Трехмерный мир. Евклид. Геометрия - [28]

Шрифт
Интервал

11 и 13Критерий подобия треугольниковТреугольники могут быть построены, исходя из двух данных прямых.
12Третья и средняя пропорциональная (теорема высот прямоугольных треугольников)Треугольник может быть построен, исходя из трех данных прямых.
8 (вывод)Четвертая пропорциональнаяЕсли в прямоугольном треугольнике из прямого угла к основанию проведен перпендикуляр, то треугольники при перпендикуляре подобны и целому, и между собой. 

МЕТОД ИСЧЕРПЫВАНИЯ

У теории отношений открылся огромный — и неожиданный, что говорит о гениальности Евдокса,— математический потенциал для определения площадей и объемов. Для этого метод танграма должен был применяться до бесконечности, что невозможно из-за наложенного Аристотелем ограничения. Следовательно, необходимо прибегать к двойному методу доведения до абсурда — в XVII веке его назвали методом исчерпывания. Евклид использовал его для доказательства следующих предложений.

Книга XII, предложение 2. Круги относятся друг к другу как квадраты их диаметров.

S>1/S>2 - d>1>2/d>2>2

Книга XII, предложение 7. Всякая призма, имеющая треугольное основание, разделяется на три равные друг другу пирамиды, имеющие треугольные основания.

P>1>1 = 1/3

Книга XII, предложение 18. Сферы находятся друг к другу в тройном отношении собственных диаметров.

Е>1>1 = d>1>3/d>2>3


АРХИМЕД И КВАДРАТУРА ПАРАБОЛЫ

Рассмотрим, как Архимед использовал метод исчерпывания для решения задачи о квадратуре параболы. В некотором смысле оно похоже на решение задачи о квадратуре круга, предложенное Евклидом. Его основная цель — вписать в площадь параболы треугольники и сложить их площади, уже известные нам. Архимед писал:

Квадратура параболы. Площадь сегмента параболы относится к площади вписанного в нее треугольника как один к трем.

Рассмотрим треугольник АСВ, вписанный в сегмент параболы ADCEBA, где вершина С — точка, через которую проходит касательная к параболе, параллельная хорде АВ. В этом случае Архимед утверждал, что площадь S (ADCEBA) равна 4/3 площади треугольника Т = АСВ. То есть

S(ADCEBA) = 4/3 x S(ΔABC) = 4/3 х Т,

Теперь мы должны вписать в оставшиеся сегменты параболы треугольники Т>1 = ADC, Т>2 = ВЕС и сегменты ADA, DCD, СЕС, ВЕВ и так до бесконечности, поскольку величины делимы до бесконечности. Все это бесконечное множество треугольников покрывает площадь, равную трети треугольника Т=АСВ. Тем не менее прибегать к бесконечному необязательно, так как мы можем воспользоваться методом исчерпывания. Можно убедиться с помощью танграма, что треугольники Т>1 = ADC и Т>2 = ВЕС «покрывают соответственно больше половины сегментов параболы ADCA и ВЕСВ». Очевидно, что площадь треугольника T>1=ADC равна половине прямоугольника АН. При этом сегмент параболы ADCEBA меньше этого прямоугольника.

Следовательно, Т>1 = ADC покрывает больше половины сегмента ADCEBA. То же самое происходит с Т>1 = ADC, сегментом параболы СЕВС и прямоугольником CF. Такой метод рассуждений справедлив последовательно для каждого остающегося сегмента параболы. Важно обратить внимание на то, что хотя в данном случае мы применили его к параболе, он работает и для других кривых, включая окружности.


Однако полностью потенциал этого метода раскрыл Архимед, самый выдающийся математик античности.

Евклид дает следующее определение методу исчерпывания:


Книга X, предложение 1. Для двух заданных неравных величину если от большей отнимается больше половины и от остатка больше половины и это делается постоянно, то останется некоторая величина, которая будет меньше заданной меньшей величины.


Это предложение равнозначно определению 4 книги V: если верно одно, то верно и другое, и наоборот. Архимед обратил на это внимание и решил ввести предложение в ранг постулата, который сегодня известен как принцип (или аксиома, или свойство) Архимеда.


Принцип Архимеда. Если имеются две величины одного порядка А и B>f то всегда существует натуральное число п при котором п х А > В или п х В > А.


Доказав предложение 7 книги XII, Евклид решил задачу расчета объема пирамиды, унаследованную от египетских математиков. Вопрос о возможности ее решения с помощью метода танграма стоял на третьем месте в составленном Давидом Гильбертом в начале прошлого века списке из 23 задач, представляющих особый интерес для математики. Ответ, разумеется, был отрицательным. А предложение 2 дает ответ на один из важнейших вопросов классической геометрии, которому и посвящена следующая глава.


ГЛАВА 6

Квадратура круга

Одним из главных достижений пифагорейской школы было открытие возможности построить квадратуру любой многосторонней плоской фигуры. Но было ли это справедливо для круга и других фигур с одной или всеми изогнутыми сторонами? Этот вопрос занимал не только математиков, но и мыслителей, и со временем выражение «квадратура круга» стало синонимом неразрешимой задачи.

Метод танграма позволяет построить квадратуру любой многосторонней плоской фигуры. Вследствие любви к обобщению древнегреческие геометры задавались вопросом: можно ли свести к квадрату фигуры с округленными сторонами и, в частности, идеальную фигуру — круг? Первым к решению этой задачи приступил гениальный математик Гиппократ Хиосский. Он разработал серповидные фигуры (гиппократовы луночки): одну над окружностью, другую — над меньшей частью окружности и еще одну — над ее большей частью. Для доказательства, основанного на методе танграма, Гиппократу были необходимы два результата:


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.