Том 6. Четвертое измерение. Является ли наш мир тенью другой Вселенной? - [14]

Шрифт
Интервал

* * *

ИОГАНН КАРЛ ФРИДРИХ ГАУСС (1777–1855)

Гаусс, несомненно, один из самых выдающихся математиков всех времен. Еще ребенком он показал исключительный талант к математике, поэтому, несмотря на скромное происхождение юного гения, его обучение было профинансировано герцогом Вильгельмом Фердинандом. Так, в 1795 г. Гаусс начал изучать математику в университете Гёттингена. В возрасте 19 лет он решил одну из классических задач геометрии, показав, что правильный 17-сторонний многоугольник можно построить с помощью линейки и циркуля. Это была первая запись в его знаменитом научном дневнике, в который он заносил короткие заметки о своих самых важных открытиях. В 21 год он написал свой важнейший труд «Арифметические исследования». Гаусс стал известен всей Европе, когда с помощью вычислений определил орбиту астероида Цереры, используя свой метод наименьших квадратов. В 1807 г. он возглавил кафедру астрономии в Гёттингенском университете и был назначен директором обсерватории. Он сделал открытия во многих областях математики, в том числе в алгебре, теории чисел, дифференциальной геометрии, неевклидовой геометрии, математическом анализе, геодезии, астрономии, теории ошибок, а также в области физики, магнетизма, оптики и электричества. После его смерти король Ганновера Георг V назвал его принцем математики и распорядился выпустить памятную медаль в честь Гаусса.



Карикатура на Гаусса авторства Энрике Моренте.


Внутренние и внешние геометрии

В чем различие между внутренней и внешней геометрией поверхности? Внутренняя геометрия — это геометрия самой поверхности, которую могли бы описать существа, живущие на этой поверхности. Гаусс в письмах к своим коллегам упоминал гипотетическую моль, живущую в двумерном пространстве. Theorema Egregium, основная теорема теории поверхностей, утверждает, что гауссова кривизна определяется геометрией, которая присуща самой поверхности. Эта величина характеризует внутреннюю кривизну поверхности. Внешняя же геометрия отражает связь между поверхностью и внешним трехмерным пространством и определяет среднюю кривизну линий на поверхности.

Локально внутренние геометрии плоскости и цилиндра одинаковы, так как обе имеют гауссову кривизну, равную нулю. Если взять лист бумаги и соединить два противоположных конца, то получится цилиндр. Этот небольшой эксперимент изменяет геометрию (метрику) поверхности. Обе поверхности внутренне плоские, и существа, живущие на них, не смогли бы отличить одну от другой, если бы они не могли посмотреть на них снаружи. Вместе с этим в трехмерном пространстве плоскость не искривлена (ее средняя кривизна равна нулю), а цилиндр, средняя кривизна которого является положительным постоянным числом, искривлен.



Плоскость (К = 0, Н = 0); цилиндр радиуса r (К = 0, Н = 1/r > 0); сфера радиуса r(К = Н = 1/r>2 > 0).


Заметим, что внутренняя геометрия сферы, гауссова кривизна которой постоянна и положительна, отличается от внутренней геометрии плоскости. Вот почему жители сферы могут понять, что они живут на искривленной поверхности, не выходя за ее пределы. Это можно сделать, проверив, что сумма углов геодезического треугольника больше 180°. Гаусс пытался доказать это для поверхности Земли, но погрешность его измерений была слишком велика. Важным следствием этого является невозможность построения правильных карт поверхности Земли, сохраняющих геометрию (расстояния, кратчайшие пути, площади и направления). Более того, для большинства поверхностей значение гауссовой кривизны варьируется от точки к точке.

Примером может служить поверхность тора (или бублика), которая имеет точки с положительной, отрицательной и нулевой гауссовой кривизной (внешние, внутренние и граничные точки поверхности тора соответственно).



Точки поверхности тора выделены разным цветом в зависимости от кривизны — положительной, нулевой или отрицательной.

* * *

МОДЕЛИ ГЕОМЕТРИЙ НА ПОВЕРХНОСТЯХ

Чтобы построить модель неевклидовой геометрии, надо представить пространство в виде поверхности, а геодезические линии на ней (кратчайшие расстояния между двумя точками) назвать прямыми линиями. Дифференциальная геометрия помогает определить, на каких поверхностях справедливы постулаты Евклида. Такие поверхности должны быть геодезически полными (геодезические линии неограниченны), чтобы выполнялись постулаты 1 и 2, и иметь постоянную гауссову кривизну К для выполнения постулатов 3 и 4. Таким образом, если К = 0, то справедлива евклидова геометрия на плоскости. Если К > 0, то мы имеем модель эллиптической геометрии (например, на сфере) с гипотезой тупых углов. В этом случае первый постулат не выполняется, так как через диаметрально противоположные точки проходит бесконечное количество геодезических линий. Диаметрально противоположные точки сферы можно отождествить, но тогда получится абстрактная поверхность вне трехмерного евклидова пространства. Если К < 0, то мы имеем модель гиперболической геометрии (псевдосферу) с гипотезой острых углов. Эта модель тоже не является геодезически полной, и, следовательно, ее тоже приходится обобщать до абстрактной поверхности вне трехмерного евклидова пространства.


Еще от автора Рауль Ибаньес
Том 26. Мечта об идеальной карте. Картография и математика

Современный человек пользуется картами практически ежедневно: карты украшают стены школ, они помогают нам ориентироваться на местности, находить кратчайший путь из одного пункта в другой, изучать историю, географию, экономику и ряд других наук.Карты — важный рабочий инструмент для некоторых специалистов: моряков, летчиков, машинистов, топографов и проч. Но много ли мы знаем о том, как создаются карты? Для чего существует такое количество разнообразных карт и насколько все они точны?Прочитав эту книгу, вы узнаете множество новых и любопытных фактов о геометрии карт.


Рекомендуем почитать
Антикитерский механизм: Самое загадочное изобретение Античности

Это уникальное устройство перевернуло наши представления об античном мире. Однако история Антикитерского механизма, названного так в честь греческого острова Антикитера, у берегов которого со дна моря были подняты его обломки, полна темных пятен. Многие десятилетия он хранился в Национальном археологическом музее Греции, не привлекая к себе особого внимания.В научном мире о его существовании знали, но даже ученые не могли поверить, что это не мистификация, и поразительный механизм, использовавшийся для расчета движения небесных тел, действительно дошел до нас из глубины веков.


Технологии против человека

Технологии захватывают мир, и грани между естественным и рукотворным становятся все тоньше. Возможно, через пару десятилетий мы сможем искать информацию в интернете, лишь подумав об этом, – и жить многие сотни лет, искусственно обновляя своё тело. А если так случится – то что будет с человечеством? Что, если технологии избавят нас от необходимости работать, от старения и болезней? Всемирно признанный футуролог Герд Леонгард размышляет, как изменится мир вокруг нас и мы сами. В основу этой книги легло множество фактов и исследований, с помощью которых автор предсказывает будущее человечества.


Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Профиль равновесия

В природе все взаимосвязано. Деятельность человека меняет ход и направление естественных процессов. Она может быть созидательной, способствующей обогащению природы, а может и вести к разрушению биосферы, к загрязнению окружающей среды. Главная тема книги — мысль о нашей ответственности перед потомками за природу, о возможностях и обязанностях каждого участвовать в сохранении и разумном использовании богатств Земли.


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


История астрономии. Великие открытия с древности до Средневековья

Книга авторитетного британского ученого Джона Дрейера посвящена истории астрономии с древнейших времен до XVII века. Автор прослеживает эволюцию представлений об устройстве Вселенной, начиная с воззрений древних египтян, вавилонян и греков, освещает космологические теории Фалеса, Анаксимандра, Парменида и других греческих натурфилософов, знакомит с учением пифагорейцев и идеями Платона. Дрейер подробно описывает теорию концентрических планетных сфер Евдокса и Калиппа и геоцентрическую систему мироздания Птолемея.


Том 13. Абсолютная точность и другие иллюзии. Секреты статистики

Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков.


Золотое сечение. Математический язык красоты

Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.