Том 38. Измерение мира. Календари, меры длины и математика - [22]

Шрифт
Интервал

По счастливой случайности, день 22 сентября был днем осеннего равноденствия. Революционеры увидели в этом добрый знак: равенство дня и ночи стало символом всеобщего равенства людей. История возвращалась к природе, к естественному ходу событий.

Как и новые рациональные меры длины и веса (килограмм и метр), десятичной системе счисления подчинялся и новый календарь. Целью авторов календаря была рационализация общественной жизни, поэтому они стремились сделать календарь простым, понятным, точным и универсальным. Прежняя система была признана памятником рабства и невежества, полным отклонений — месяцы имели разную продолжительность, а праздники приходились на разные дни. Новый календарь отражал движение небесных тел, а все расчеты в нем производились в десятичной системе счисления. Все интервалы времени, меньшие месяца, делились на части в десятичной системе. Двенадцать месяцев состояли из 30 дней и делились на интервалы в 10 дней — декады. Оставшиеся пять дней добавлялись в конце года. Каждые четыре года к ним добавлялся еще один день. Новая система, по сути, повторяла древнеегипетский календарь: в нем было 12 месяцев по 30 дней в каждом, которые делились на интервалы по 10 дней, а в конце года добавлялись 3 дней.

* * *

ВЕСНА ВО ФРАНЦУЗСКОМ РЕВОЛЮЦИОННОМ КАЛЕНДАРЕ

Весна начиналась месяцем Жерминаль. Далее перечислены дни этого месяца и образы, которые с ними соотносились. Каждому месяцу соответствовал свой женский образ.

Жерминаль (21 марта — 19 апреля):




Образ Жерминаль в революционном календаре.

* * *

Революционный календарь, провозглашенный 5 октября 1793 года, имел светский характер: в нем не было воскресений — дней, когда воздавались почести Богу, и дней почитания святых. Так как из календаря были исключены все религиозные символы, требовалось выбрать новую традицию, и авторы обратились к природе.

Каждый день был связан не с каким-либо святым, а с растениями, минералами, животными (дни, оканчивавшиеся на 3) и орудиями труда (дни, оканчивавшиеся на 0). Так, 25 декабря стал днем собаки. Месяцы имели более поэтические названия.

Осенними месяцами (их названия оканчивались на «-ер») были Вандемьер (от лат. vindemia — «сбор винограда»), Брюмер (от французского brume — «туман») и Фример (от французского frimas — «изморозь»).

Зимними месяцами (их названия оканчивались на «-оз») были Нивоз (от лат. nivosus — «снежный»), Плювиоз (от лат. pluviosus — «дождливый») и Вантоз (от лат. ventosus — «ветреный»).

Весенними месяцами (их названия оканчивались на «-аль») были Жерминаль (от лат. germen — «побег»), Флореаль (от лат. flos — «цветок») и Прериаль (от французского prairie — «луг»).

Летними месяцами (их названия оканчивались на «-дор») были Мессидор (от лат. messis — «жатва»), Термидор (от греческого thermos — «тепло») и Фрюктидор (от лат. fructus — «плод»).

Простому народу не понравился отказ от популярных праздников и празднеств в честь святых покровителей цехов. Стало ясно, что революционный календарь не станет частью народной культуры. Он был далек от общества и не был усвоен массовым сознанием, поэтому постепенно уступил место прежнему календарю.

В VIII году революционные праздники были отменены. В X году Наполеон Бонапарт вновь сделал воскресенье днем отдыха, чтобы восстановить связи между церковью и революционным государством. Наконец, 15 Фрюктидора XIII года (9 сентября 1805 года) революционный календарь был официально упразднен. Назывались две причины: он был недостаточно рациональным и имел слишком националистический характер. Григорианский календарь был восстановлен 1 января 1806 года, спустя. чуть больше года после коронации Наполеона. К счастью, система мер и весов, созданная в том же революционном духе, оказалась более успешной.

О ней мы расскажем в главе 5.

Глава 4

Измерение Земли

Изучение движения небесных тел помогло определить единицы измерения времени, однако человека также интересовали очертания и размеры мира, в котором он жил, и он захотел измерить Землю. Птолемей не только внес вклад в измерение небес, но и стал непререкаемым авторитетом во всем, что касалось измерения Земли, описав в своей «Географии» весь известный мир своего времени. В XV–XVI веках, с открытием новых территорий, европейцы расширили границы привычного мира и внесли в труд Птолемея поправки. В конце XVII века были произведены более тщательные измерения размеров Земли при помощи триангуляции. Так были заложены основы геодезии. Относительно формы Земли существовало две точки зрения: согласно первой, Земля была сплюснута у полюсов, согласно второй — у экватора. Разногласия сторонников этих двух точек зрения вылились в бурную полемику, и было принято решение найти истину, измерив длину дуги меридиана величиной в один градус. Измерения должны были произвести две экспедиции в двух точках, максимально отстоящих по широте друг от друга.


Первые представления о форме и размерах Земли

В древности большинство людей верило, что обитаемая Земля плоская — по крайней мере, она выглядела именно так, если не принимать в расчет неровности рельефа. Однако древнегреческие философы начали рассматривать иные гипотезы. Анаксимандру приписывается концепция, согласно которой Земля имела цилиндрическую форму, была вытянута в длину и располагалась в центре небесной сферы. Согласно этой концепции, обитаемым был лишь верхний диск цилиндрической Земли. Считается, что Анаксимандр составил карту Земли, которую позднее исправил и усовершенствовал 


Рекомендуем почитать
Урожаи и посевы

Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.