Том 33. Разум, машины и математика. Искусственный интеллект и его задачи - [6]
Автоматическая классификация электронной почты с целью отделить спам от корректных сообщений — одна из областей применения экспертных систем.
Третий крупный раздел искусственного интеллекта — планирование. Человек обладает способностью строить планы с незапамятных времен. Можно сказать, что человек и выжил-то благодаря планированию. Если мы перенесемся в палеолит, то и там встретимся с проблемой, требующей планирования: как распределить наличный объем пропитания между числом потребителей — членов племени? Кому отдать сочное мясо, богатое калориями: тем, кто собирает ягоды, или охотникам?
А если один из собирателей — женщина на последних месяцах беременности? Все эти вопросы соответствуют так называемым ограничениям системы, то есть обстоятельствам, которые следует учитывать при составлении плана.
Ограничения делятся на обязательные и необязательные. В нашем примере с доисторическим племенем лучшие куски мяса должны доставаться тем, кто больше всего нуждается в этом. Однако не случится ничего страшного, если самому сильному охотнику в один из дней не достанется самый сочный кусок. Конечно, эта ситуация не может повторяться постоянно, но уж один-то день охотник может потерпеть.
Следовательно, это необязательное ограничение.
В качестве примера обязательного ограничения приведем распределение ресурсов университета (то есть аудиторий и преподавателей) в течение учебного года. Потребителями ресурсов будут студенты, изучающие, например, математический анализ, торговое право, физику и другие предметы. При распределении ресурсов нужно учесть, что студенты, изучающие торговое право и физику, не могут одновременно занимать, например, аудиторию 455. Заведующий кафедрой математического анализа также не может преподавать торговое право, так как не имеет необходимой квалификации. В этом примере описанные ограничения являются обязательными.
Таким образом, при разработке интеллектуального алгоритма планирования важнейшую роль играет возможность или невозможность нарушить накладываемые ограничения.
* * *
ЗАДАЧА КОММИВОЯЖЕРА
Порой определенная задача может быть отнесена к тому или иному разделу искусственного интеллекта в зависимости оттого, с какой стороны мы подойдем к ее решению. Хорошим примером является задача коммивояжера (Travelling Salesman Problem, или TSP), которую можно решить путем поиска или планирования.
Формулировка этой задачи звучит так: для данного множества городов, дорог между ними и расстояний нужно найти маршрут коммивояжера, проходящий через все города. Коммивояжер не может заезжать в один и тот же город дважды и при этом он должен преодолеть наименьшее расстояние. Как читатель может догадаться, в зависимости от расположения маршрутов между городами коммивояжер обязательно посетит какой-либо город дважды, следовательно, это условие можно считать несущественным.
Пример графа городов, связанных между собой. Расстояние между городами в километрах указано на ребрах графа.
Четвертый раздел искусственного интеллекта — автоматические рассуждения.
Именно они привлекают наибольшее внимание широкой публики и часто становятся главной темой научной фантастики. Тем не менее автоматическим рассуждениям как отдельной дисциплине дала начало не слишком увлекательная задача об автоматическом доказательстве математических теорем.
Часто выдвигаются новые теоремы, которые требуется доказать или опровергнуть. Доказательство теорем может быть крайне сложным. Именно это произошло с великой теоремой Ферма (согласно ей, если n — целое число, большее двух, то несуществует ненулевых натуральных чисел, удовлетворяющих равенству z>n = х>n + у>n) — на доказательство этой теоремы ушло более 200 лет!
В 1956 году экономист Герберт Саймон (1916–2001) и инженер Аллен Ньюэлл (1927–1992) совместно разработали машину под названием Logic Theorist, способную доказывать нетривиальные теоремы математической логики. Разумеется, появление этой машины стало вехой в развитии искусственного интеллекта и вновь вызвало философскую дискуссию о возможности создания мыслящих машин. Эта дискуссия, конечно же, повлияла на литературу и кино 1960—1970-х годов, породив образы мыслящих машин, враждебных человеку. Согласно философу Памеле МакКордак, Logic Theorist доказывает: машина способна выполнять задачи, которые cчитаются творческими и подвластными исключительно человеку.
Гэрберт Саймон (слева) и Аллен Ньюэлл за игрой в шахматы, 1958 год.
В Logic Theorist использовались так называемые символьные системы, созданные математиками, чтобы придать смысл некоторым выражениям и уйти от произвольных обозначений. К примеру, мы можем утверждать: высказывание «быть человеком» означает «быть смертным», что можно записать математически как А —> В, где символ А эквивалентен высказыванию «быть человеком», символ —> — «означает», а В равносильно высказыванию «быть смертным». «Быть человеком означает быть смертным» — это произвольное высказывание, которое записывается выражением А —> В. После формализации всех произвольных членов выполнять операции с ними намного проще с точки зрения математики и информатики.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.