Том 33. Разум, машины и математика. Искусственный интеллект и его задачи - [39]

Шрифт
Интервал



На рисунке черными точками обозначены различные «птицы» стаи, белой точкой — центр масс стаи. Стрелкой указано направление, в котором следует стая в поисках глобального максимума.



Роевой интеллект имитирует движение некоторых птиц, к примеру скворцов, которые собираются в огромные стаи, вычерчивающие в небе весьма любопытные фигуры.


Несмотря на инновационный характер роевого интеллекта, его полноценное использование для решения реальных задач только начинается. Сегодня активно рассматривается возможность применения роевого интеллекта в автоматически управляемых транспортных средствах. Наиболее интенсивные исследования в этой области ведутся в двух тесно связанных отраслях — авиакосмической и военной промышленности.


Области применения искусственной жизни

Искусственная жизнь — относительно новый раздел искусственного интеллекта, и многие области его применения только зарождаются. В будущем сложные задачи контроля, управления и планирования будут выполняться именно «живыми» системами, как это уже происходит на рынках ценных бумаг.


Теория игр

Теория игр — раздел математики, изучающий стратегии взаимодействия субъектов и процессы принятия решений. Конечная цель теории игр — определить оптимальные стратегии и спрогнозировать поведение субъектов в конкретных ситуациях.

Основы этой дисциплины заложили математики Джон фон Нейман и Оскар Моргенштерн во время холодной войны. Их целью был поиск оптимальных военных стратегий, однако теория игр быстро нашла применение в экономике, политике, этике, философии, биологии и, разумеется, вычислительной технике.

Теория игр крайне полезна при изучении сложных адаптивных систем, так как агенты, составляющие эти системы, часто должны соперничать или сотрудничать между собой для общего блага. При сотрудничестве часто происходит так, что отдельные усилия конкретного агента оказываются выше, чем общая выгода, пропорционально разделенная между всеми агентами, составляющими систему. Тем не менее эти отдельные усилия способны сыграть определяющую роль при достижении общего результата, который может на несколько порядков превышать индивидуальные усилия агентов. Таким образом, чтобы стимулировать адекватное поведение агентов, составляющих систему, и определить ее жизнеспособность на основе их поведения, необходимо использовать методы теории игр.





Знаменитый робот ASIMO, созданный в компании Honda, способен, подобно человеку, спускаться по лестнице и играть в футбол.


И вновь интеллектуальный анализ данных

Искусственная жизнь привлекательна и окутана тайной для непосвященных. Однако описанные нами понятия, которые скрываются за определением искусственной жизни, например клеточные автоматы, используются для решения достаточно прозаических инженерных задач, в частности для интеллектуального анализа данных, о котором мы уже рассказали. В задачах анализа данных для получения выводов требуется обрабатывать огромные объемы данных, что не под силу экспертам-людям. По этой причине для анализа обычно используются интеллектуальные информационные инструменты.

Анализ данных можно выполнить множеством средств, среди которых особое место занимают клеточные автоматы, так как они позволяют представить взаимосвязи между данными в пространстве. Допустим, что мы анализируем данные о продажах зонтов в конкретной стране. Сведения о продажах с разбивкой по клиентам могут быть обработаны без учета местоположения, в лучшем случае — разделены на категории по территориям: к примеру, клиент А из города X приобрел 20 единиц товара, клиент В из города У — 240 единиц, клиент С из города Z — 4530 единиц. В системе, где не учитывается территориальное распределение, города XY и Z — всего лишь категории, и мы никак не можем указать, что город X находится в 150 км к югу от Y, а Y — в 400 км южнее Z. Если мы будем учитывать эти данные, то станет понятно, что в северном регионе страны дожди идут чаще, а к югу продажи зонтов существенно снижаются.

Теперь представим данные о местоположении в виде таблицы, подобно тому, как это происходит при использовании клеточных автоматов. Постараемся связать расположение данных в таблице с реальным географическим местоположением регионов, откуда поступили данные о продажах. При таком представлении данных территориальное расположение можно учесть намного более интеллектуальным способом, чем при простом разбиении на категории.

После сведения данных в таблицу можно применить эволюционный алгоритм, позволяющий обнаружить правила, которые необходимо реализовать в клеточном автомате для анализа. Вернемся к примеру с продажами зонтов и дополним данные о продажах уровнем осадков в егионах. Мы можем разработать алгоритм, позволяющий получить множество правил, согласно которым раскрасим клетки таблицы в тот или иной цвет в зависимости от продаж зонтов в различных регионах, исключив влияние уровня осадков. Если мы представим данные о продажах на карте без учета уровня осадков, получим следующую картину.



Если мы исключим воздействие разного уровня осадков, карта будет выглядеть следующим образом.



На основе этих данных эксперт может определить, что объем продаж выше всего в центральных и южных регионах. Это означает, что уровень покупательной способности в этой части страны выше: из-за особенностей погоды зонты не являются товаром первой необходимости, однако люди готовы покупать их. Далее компания — продавец зонтов повысит цены в центре и на юге страны: хотя в этом регионе продажи меньше, люди покупают зонт не из необходимости, а как предмет роскоши, следовательно, менее чувствительны к цене.


Рекомендуем почитать
В поисках бесконечности

За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ. В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых. Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.


Математика на ходу

Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.


Значимые фигуры

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.