Том 33. Разум, машины и математика. Искусственный интеллект и его задачи - [38]
Иммунная система животного представляет собой крайне эффективную систему распознавания образов и оптимизации. Для каждой новой задачи, которую необходимо решить (то есть для нового антигена, попадающего в тело), путем упорядоченного процесса проб и ошибок иммунная система быстро находит решение — антитело, способное распознать антиген.
Действие иммунной системы напоминает эволюционный процесс с одним отличием: при работе иммунной системы не происходит скрещивания различных решений с целью выявления среднего решения, сочетающего в себе достоинства родительских. Действие иммунной системы можно представить следующим образом.
1. Случайным образом генерируется обширное множество антител.
2. Оценивается пригодность каждого антитела, или его способность распознать антиген, попавший в организм.
3. На основе антител первого поколения по следующей схеме создается второе поколение.
1) Генерируется множество копий антител. Число копий каждого антитела пропорционально его пригодности. Иными словами, новое поколение будет содержать много копий очень эффективных антител, а неэффективные антитела будут присутствовать лишь в нескольких копиях или вовсе не попадут в следующее поколение.
2) В копии антител вносятся изменения (мутации, если использовать терминологию эволюционных алгоритмов) обратно пропорционально их эффективности. Иными словами, копии эффективных антител в новом поколении почти не изменятся, а копии неэффективных антител претерпят серьезные изменения.
4. Для новых антител, полученных на предыдущих этапах, вновь оценивается способность распознавать искомый антиген, после чего весь процесс повторяется, и создается новое поколение антител.
5. Когда биологическая система считает, что эффективное антитело для борьбы с антигеном найдено, процесс останавливается.
Описанный выше процесс создания антител в иммунной системе нетрудно адаптировать для решения других реальных задач. Единственный важный момент заключается в том, как правильно представить возможные решения проблемы, чтобы их можно было копировать и видоизменять. В этом случае рекомендуется следовать той же методологии, что и при использовании эволюционных алгоритмов, то есть кодировать решения с помощью хромосом, состоящих из генов. Хотя мы смешиваем терминологию из двух, на первый взгляд совершенно разных методов, описанный выше процесс применяется на практике. Искусственные иммунные системы все чаще используются для решения реальных инженерных задач, поскольку они позволяют эффективно оптимизировать решения, а также прекрасно адаптируются к архитектуре современных суперкомпьютеров и распределенных вычислений (в частности, грид-вычислений и облачных вычислений). При грид-вычислениях и облачных вычислениях ресурсы распределены в абстрактном и нечетком «облаке» компьютеров, очень мощных по отдельности, при этом обмен данными между ними необязательно должен быть эффективным. При централизованном контроле над иммунной системой оценка антител может производиться в облаке, а по завершении оценки следующее поколение антител будет создаваться центральной системой контроля. В этом сценарии наибольшие вычислительные затраты связаны с индивидуальной оценкой антител, именно поэтому она проводится в облаке. Создание новых поколений может выполняться последовательно с небольшими затратами в центральной системе.
Создатели роевого интеллекта (англ, swarm intelligence) также черпали вдохновение в природе. Этот термин был введен Херардо Бени и Ван Цзином в конце 1980-х. Роевой интеллект основан на моделировании поведения множества отдельных простых сущностей таким образом, что их совокупное поведение может считаться интеллектуальным. Основная задача при реализации роевого интеллекта — определить, как именно отдельные сущности взаимодействуют со своими соседями и средой. Если эта политика взаимодействий определена корректно, то при агрегировании всех сущностей колонии, или роя, будет наблюдаться совокупное интеллектуальное поведение.
Рассмотрим практический пример, в котором имитируется поведение стаи птиц, кружащей в небе. Допустим, что мы хотим найти оптимум сложной математической функции, насчитывающей сотни измерений, со множеством локальных максимумов и минимумов. Вначале (то есть в момент времени t = 0) расположим сто «птиц» случайным образом, но вблизи друг от друга, на некоторой части области определения функции. Всякий раз, когда мы движемся вперед вдоль оси времени (t' = t + 1), каждая «птица» должна учитывать всего два параметра: направление (А), в котором располагается «центр масс» стаи, то есть среднее направление, указывающее, где находятся остальные члены стаи, чтобы не слишком отдаляться от них, и направление (В) максимального градиента функции, которую необходимо оптимизировать — так как мы хотим найти максимум функции, нужно определить, в каком направлении функция возрастает быстрее всего. На основе двух вычисленных направлений А и В рассчитывается третье, С = А + В. Каждая «птица» должна немного сместиться в этом направлении С. Так как все «птицы» подчиняются этим правилам поведения, стая будет двигаться вдоль графика функции, не слишком отдаляясь от него, в поисках глобального максимума. Преимущество использования группы «птиц» позволяет увеличить выборочное пространство и снизить вероятность попадания в локальные максимумы, далекие от глобального.
Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.
Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.