Том 33. Разум, машины и математика. Искусственный интеллект и его задачи - [29]
Именно проклятие размерности стало причиной появления целого раздела статистики под названием отбор характеристик (англ, feature selection). В этом разделе изучаются различные математические методы, позволяющие исключить максимально большой объем данных, не относящихся к рассматриваемой задаче. Методы отбора характеристик могут варьироваться от исключения избыточной или связанной информации до исключения случайных данных и переменных, имеющих постоянное значение (то есть переменных, значения которых на множестве выборок практически не меняются). В качестве примера приведем переменную «гражданство».
Логично, что ее значение будет одинаковым для всех или почти всех избирателей, следовательно, эта переменная не имеет никакой ценности.
Чаще всего используется такой метод отбора характеристик, как метод главных компонент. Его цель — определение проекции, в которой вариация данных будет наибольшей. В примере, представленном на следующем рисунке, две стрелки указывают две главные компоненты с максимальной вариацией в облаке точек. Максимальная вариация указана более длинной стрелкой. Если мы хотим снизить размерность данных, то две переменные, откладываемые на осях абсцисс и ординат, можно заменить новой переменной — проекцией выборок на компоненту, указываемую длинной стрелкой.
На этом графике стрелки указывают направления, в которых вариация данных будет наибольшей.
* * *
А ЭТО КТО? РАСПОЗНАВАНИЕ ЛИЦ
Многие современные фотоаппараты способны во время съемки распознавать лица. Например, цифровые фотоаппараты часто содержат функцию, позволяющую определить число лиц на фотографии и автоматически настроить параметры съемки так, чтобы все лица оказались в фокусе.
Социальная сеть Facebook также использует функцию распознавания лиц, способную определять людей на фотографиях, загружаемых пользователем. Как же действуют подобные функции?
Большинство функций распознавания лиц основаны на методе главных компонент. Сначала проводится обучение системы на множестве изображений различных лиц. В ходе обучения система определяет главные компоненты в результате анализа нескольких фотографий одного лица и множества фотографий всех лиц. В действительности система всего лишь запоминает наиболее характерные черты лица каждого человека, чтобы потом распознать его.
Таким образом, для нового изображения система извлекает информацию о главных компонентах и сравнивает ее с информацией о компонентах, полученной в ходе обучения. В зависимости от процента совпадения система способна определить, какая часть тела изображена на фотографии, лицо или нога, и даже распознать, какому человеку принадлежит это лицо.
* * *
Метод главных компонент заключается в поиске линейного преобразования, позволяющего получить новую систему координат для исходного множества выборок.
В этой системе координат первая главная компонента будет отражать наибольшую вариацию, вторая — следующую по величине вариацию и так далее. Число компонент может быть любым. Одно из преимуществ этого метода заключается в том, что на промежуточных этапах поиска компонент с наибольшей вариацией можно определить, какую часть вариации переменных объясняет каждая компонента. К примеру, первая главная компонента может объяснить 75 % вариации, вторая — 10 %, третья — 1 % и так далее. Так можно уменьшить размерность множества данных и при этом гарантировать, что новые измерения, которые придут на смену исходным, будут объяснять минимум вариации данных. Рекомендуется, чтобы вариация, в сумме описываемая выделенными компонентами, составляла около 80 %.
Несмотря на все преимущества и относительную простоту метода главных компонент (сегодня этот метод входит в стандартную поставку всех пакетов статистических программ), по мере увеличения числа измерений в модели сложность расчетов возрастает, и вычисления могут оказаться непосильными. В подобных случаях используются два других метода отбора характеристик: жадный прямой отбор (greedy forward selection) и жадное обратное исключение (greedy backward elimination). Оба этих метода обладают серьезными недостатками: они требуют выполнения огромного объема расчетов, при этом вероятность выбора наиболее подходящих характеристик невысока. Однако основная идея этих методов и ее реализация просты, а объем необходимых вычислений для большого числа измерений все же не так высок, как при использовании метода главных компонент. Это объясняет, почему жадный прямой отбор и жадное обратное исключение стали так популярны среди специалистов по интеллектуальному анализу данных.
* * *
ЖАДНЫЕ АЛГОРИТМЫ
Жадные алгоритмы — разновидность алгоритмов, в которых для определения следующего действия (при решении задач планирования, поиска или обучения) всегда выбирается вариант, ведущий к максимальному увеличению некоего градиента в краткосрочной перспективе.
Достоинство жадных алгоритмов заключается в том, что они способны очень быстро найти максимальное значение определенных математических функций. Для сложных функций, имеющих несколько максимумов, жадные алгоритмы, напротив, обычно останавливаются на одном из локальных максимумов, так как не могут оценить задачу в целом. В итоге жадные алгоритмы оказываются не вполне эффективны, так как результатом их работы часто является субоптимум функции.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.