Том 33. Разум, машины и математика. Искусственный интеллект и его задачи - [20]

Шрифт
Интервал



Нейронная сеть может быть сколь угодно сложной, иметь произвольное число скрытых слоев и, кроме того, содержать связи, которые идут в обратном направлении и тем самым моделируют некую разновидность памяти. Ученые построили нейронные сети, содержащие до 300 тысяч нейронов — столько, сколько содержит нервная система земляного червя.

В нейронной сети процесс обучения усложняется, поэтому инженеры разработали множество методов обучения. Один из самых простых — метод обратного распространения ошибки, давший название отдельной разновидности нейронных сетей, в которой он используется. Суть этого метода состоит в снижении ошибки выходного значения нейронной сети путем корректировки весов входных значений синапсов в направлении справа налево по методу градиентного спуска. Иными словами, сначала весам всех синапсов нейронной сети присваиваются произвольные значения, после чего на вход сети подается выборка, выходное значение для которой известно (такая выборка называется обучающей). Как и следовало ожидать, в этом случае выходное значение будет случайным. Далее, начиная с нейронов, близких к выходу, и заканчивая нейронами входного слоя, начинается корректировка весов связей.

Цель этой корректировки — приблизить выходное значение нейронной сети к реальному известному значению.

Эта процедура повторяется несколько сотен или тысяч раз для всех обучающих выборок. Когда обучение для всех выборок завершено, говорят, что прошла эпоха обучения. Далее процесс обучения может быть повторен на протяжении еще одной эпохи для тех же обучающих выборок. Как правило, при обучении рассматривается несколько десятков выборок. Этот процесс подобен реальному обучению, когда человек вновь и вновь видит одни и те же данные.

* * *

ОПАСНОСТЬ ПЕРЕОБУЧЕНИЯ

Система прогнозирования, в которой применяется машинное обучение, формулирует прогнозы путем обобщения предшествующего опыта. Следовательно, система, неспособная совершать обобщения, становится бесполезной.

Если процесс обучения повторяется слишком много раз, наступает момент, когда веса подобраны столь точно и система настолько адаптировалась к обучающим выборкам, что прогнозы формулируются не путем обобщения, а на основе запомненных случаев. Система становится способной выдавать корректные прогнозы для обучающих выборок, но всякий раз, когда на вход будет подаваться иная выборка, полученный прогноз окажется некорректным. Такая ситуация называется переобучением.

Нечто похожее происходит с ребенком, который не учится умножать, а запоминает таблицу умножения. Если мы попросим его найти произведение двух чисел из таблицы, он ответит без запинки, но если мы попросим его перемножить два других числа, ребенок задумается.



Таблицы умножения — прекрасный пример обучения путем запоминания.

* * *

С годами архитектура нейронных сетей и методы обучения усложнялись. Постепенно возникло множество разновидностей нейронных сетей для решения самых разных задач реальной жизни. Сегодня наиболее часто используются нейронные сети Хопфилда, в которых реализован механизм запоминания под названием «ассоциативная память».



Схема нейронной сети Хопфилда.


В ассоциативной памяти информация упорядочена по содержанию. Следовательно, для доступа к ней необходимо указать содержание информации, а не ее физическое расположение, как при чтении с жесткого диска или из оперативной памяти компьютера.

Другой тип нейронных сетей, широко используемых сегодня, это самоорганизующиеся карты Кохонена. Нейронные сети этого типа содержат новаторское решение: их обучение происходит не под наблюдением. Напротив, сама сеть учится на своих ошибках.


…и мозг начинает работать

В физике существует отдельная дисциплина, инверсная кинематика, которая занимается расчетом движений, необходимых для того, чтобы переместить предмет из точки А в точку В. По мере внесения в систему новых степеней свободы сложность расчетов (различных операций над матрицами) возрастает экспоненциально.

Рассмотрим в качестве примера роботизированную руку с выдвижным манипулятором, способную вращаться в четырех местах. Если мы будем решать матричные уравнения инверсной кинематики классическим способом, то даже суперкомпьютеру потребуется несколько часов на то, чтобы определить, как именно необходимо сместить руку в каждом направлении, чтобы переместить инструмент, закрепленный в манипуляторе, из точки А в точку В.



Таким образом, при реализации роботизированных систем, способных изменять траектории движения в реальном времени, классические методы решения матричных уравнений неприменимы. Если речь идет о роботах, систематически выполняющих одни и те же задачи (это могут быть роботы на сборочном конвейере автомобильного завода), то можно заранее рассчитать и последовательно запрограммировать работу моторов и выдвижного манипулятора. Но если мы хотим сконструировать роботизированную руку, способную действовать автономно и координировать движения в зависимости от ситуации (представьте себе роботов, которые используются на космических кораблях, в хирургии или первых экспериментальных домашних роботов), то нам потребуются более передовые системы, способные быстро вычислять, как именно должны двигаться детали робота, чтобы выполнить поставленную задачу.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.