Том 33. Разум, машины и математика. Искусственный интеллект и его задачи - [18]

Шрифт
Интервал



Супермаркет в Нью-Йорке.

* * *

В представленной сети видно, что 98 % клиентов, купивших книгу «Я, робот», также приобрели роман «Основание». И напротив, ни один из тех, кто купил «Дюну», не приобрел «Гордость и предубеждение», поэтому между этими двумя книгами не существует никакой связи. Если система обнаруживает, что клиент недавно купил книгу «Я, робот» и теперь ищет информацию о книге «Основание», в разделе рекомендаций он увидит «Дюну» и «Контакт», так как их приобрела значительная доля покупателей, купивших первые две книги. Все вышеперечисленные действия образуют индивидуальную маркетинговую кампанию для каждого клиента, цель которой — повышение продаж. В ходе этих кампаний покупателям автоматически предлагаются два товара, о существовании которых они, возможно, и не подозревали. Система располагает обширной информацией о прошлых покупках и формирует представленную выше сеть причинно-следственных связей для рекомендации новых товаров.

Системе также известно, что рекламировать «Гордость и предубеждение» тому,

кто покупает научно-фантастические романы (а именно это происходит при классических маркетинговых кампаниях), — пустая трата времени. В рамках традиционной маркетинговой кампании выход нового издания «Гордости и предубеждения» мог быть объявлен, к примеру, в тематической программе о книгах, выходящей в эфир в 23:00 на канале, посвященном культуре. Но даже если бы маркетологи верно выбрали программу и время ее выхода в эфир так, чтобы ее с большой вероятностью посмотрели люди, заинтересованные в продукте, на многих любителей научной фантастики реклама не произвела бы никакого эффекта. При использовании статического канала маркетинга, например телевидения, радио или афиш на улицах, рекламодатель не может определить индивидуальный профиль клиента. И даже если профиль клиента известен, рекламодатель не располагает необходимыми средствами для того, чтобы адаптировать рекламу для каждого из нас.


Мозг робота: нейронные сети

Робототехника — одна из самых сложных областей инженерии, и не только потому, что в простой руке робота используется множество сервоприводов и электронных устройств. Ее сложность связана с тем, что траектории движения подвижных частей робота определяются путем сложных математических расчетов. В некоторых случаях все расчеты выполняются в искусственном мозге робота, состоящем, подобно мозгу высших живых организмов, из нейронных сетей. Но в случае с роботами речь идет об искусственных нейронах.



Схематичное изображение нейрона человеческого мозга.


Понятия «нейронная сеть» и «искусственный нейрон» появились не так давно, и эйфория по отношению к ним уже не раз сменялась разочарованием. Эти понятия возникли как составляющие алгоритма Threshold Logic Unit (блок пороговой логики), который был предложен Уорреном Маккалоком и Уолтером Питтсом в 1940-е годы и имел большой успех. Искусственный нейрон, по сути, представляет собой инкапсуляцию указанного алгоритма. Специалисты описывают искусственный нейрон следующим образом:

Вход>1 —> X>1

Вход>2 —> Х>2

Вход>i —> X>i

Если 

> Пороговое значение,

то Выход <— 1

иначе Выход <— 0

На обычном языке это означает: нейрон возбуждается тогда и только тогда, когда стимул, то есть сумма произведений (X>iВес>i), превышает определенное пороговое значение.

Как вы можете видеть, нейрон крайне прост, поскольку требует лишь нескольких арифметических действий и одну операцию сравнения. Простота искусственных нейронов способствовала их реализации в микрочипах. К концу 90-х годов стала возможной полная реализация искусственных нейронных сетей исключительно в аппаратном обеспечении. Сегодня эти микрочипы используются при изготовлении электронных прогнозных устройств, к примеру, приборов, позволяющих определить причину недомогания плачущего ребенка.

Искусственный нейрон функционирует аналогично естественному. Но основная сложность нейронных сетей заключается в двух элементах, которые должны согласовываться между собой. Именно от них зависит, сможет ли нейронная сеть делать более или менее точные прогнозы. Эти два элемента — вес входных сигналов и пороговое значение. Трудоемкая корректировка этих значений, по результатам которой для ряда входных значений нейрон должен выдавать желаемое выходное значение, называется обучением. Прорыв в обучении нейронов совершил Фрэнк Розенблатт в конце 1950-х, предложив модель нейрона, способного корректировать веса и пороговое значение. Модель Розенблатта получила название перцептрон.

С точки зрения биологии реальный нейрон ведет себя почти так же: каждый нейрон имеет множество входов, куда поступают электрические сигналы от других нейронов (соединения между нейронами называются синапсами), затем определяется, превышают ли эти стимулы порог чувствительности. При этом следует учитывать, что некоторые синапсы важнее других (важность синапсов описывается с помощью весов, о которых мы упоминали выше). Если порог чувствительности превышен, то по аксону проходит электрический сигнал (в случае с искусственным нейроном аналогом этого сигнала будет выходное значение).

Перцептрон оказался полезным при прогнозировании: он способен предсказать, к какому классу принадлежит заданная выборка. Классическим примером является задача о растениях рода ирис, в которой рассматриваются выборки трех видов: ирис щетинистый (


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.