Том 33. Разум, машины и математика. Искусственный интеллект и его задачи - [13]

Шрифт
Интервал

особями? Что если в турнире будет одерживать верх не одна, а m особей? В таком случае говорят, что проводится турнир n: m. С увеличением n давление отбора будет повышаться, с увеличением m — понижаться.

Чтобы лучше понять схему проведения турнира, представьте себе начальные этапы футбольной Лиги чемпионов. Они проводятся по схеме 4:2 — футбольные команды объединяются произвольным образом в группы по четыре, а две лучшие переходят в следующий этап. Конечно, в примере с Лигой чемпионов нельзя говорить о действительно случайном турнире, так как при формировании групп учитываются определенные критерии — так, в одну группу не могут попасть две команды из одной страны. Однако мы тоже можем вводить свои правила при использовании эволюционных алгоритмов, что будет определять тот или иной тип эволюции.

Часто используется правило, согласно которому в одном турнире соперничают максимально похожие особи. Алгоритм способен находить оптимальные значения функции со множеством оптимумов.



Эти роботы-крабы определяют участки с максимальной освещенностью. У одного из этих роботов нет ног, у другого их сразу четыре. Создатель роботов, Джош Бонгард из Вермонтского университета, описал их поведение с помощью эволюционного генетического алгоритма и смог показать, что они действовали лучше, чем классические роботы, созданные с той же целью.


Размножение

После отбора особей, которые оставят потомство, наступает этап размножения.

Существует несколько систем размножения, которые необязательно являются важнейшими составляющими эволюционных алгоритмов, но на самом деле конкретный эволюционный алгоритм получает свое название в зависимости от того, какая система размножения в нем используется. К примеру, генетические алгоритмы, о которых мы поговорим чуть позже, представляют собой эволюционные алгоритмы, в которых для размножения особей применяется скрещивание с мутациями.

Генетические алгоритмы — самые популярные среди всех эволюционных алгоритмов благодаря тому, что они оптимально сочетают сравнительно невысокую сложность программирования и хорошие результаты. Размножение путем скрещивания с мутациями тесно связано с основными понятиями генетики. В генетическом алгоритме каждая особь представлена хромосомой, а каждая хромосома представляет собой последовательность генов. При скрещивании хромосом двух особей сначала случайным образом определяется точка, которая делит хромосомы на две половины.

Далее эти четыре половины (две для каждой из родительских особей) скрещиваются между собой, и образуется два потомка. Первый потомок содержит первую половину хромосомы первой родительской особи (назовем ее отцом) и вторую половину хромосомы второго родителя (матери). Второй потомок будет содержать первую половину хромосомы матери (до точки пересечения) и вторую половину хромосомы отца.



После получения потомства проводится мутация, при которой с очень маленькой вероятностью (как правило, около 5 %) несколько генов в новых хромосомах изменяются случайным образом. В теории и на практике можно показать, что без мутаций генетические алгоритмы не слишком способствуют оптимизации — результатами их работы обычно становятся субоптимумы функции, то есть локальные максимумы. Благодаря мутациям генетические алгоритмы совершают небольшие случайные прыжки в пространстве поиска. Если результаты этих прыжков окажутся не слишком многообещающими, то в ходе эволюции они будут отброшены, в противном случае — закрепятся в наиболее приспособленных особях следующих поколений.

* * *

ГРЕГОР МЕНДЕЛЬ И ГЕНЕТИКА

Австрийский монах Грегор Мендель (1822–1884) открыл и в 1866 году опубликовал первые законы наследования. Эти законы, открытые по результатам скрещивания нескольких видов гороха и известные сегодня как законы Менделя, описывают передачу определенных признаков от родителей к потомкам. С открытием этих законов в генетике и науке вообще появилось важное понятие — доминантные и рецессивные гены.

Мендель в ходе своих экспериментов зафиксировал окрас горошин у различных видов гороха. Первое поколение он получил путем скрещивания растений, приносивших желтые горошины, с растениями, приносившими зеленые горошины. Мендель заметил, что растения, полученные в результате скрещивания, имеют только желтые горошины. Но позднее он обнаружил, что при скрещивании этих растений между собой растения следующего поколения в большинстве своем имеют желтые горошины, однако, к удивлению ученого, у некоторых растений горошины вновь имели зеленый цвет. Соотношение растений с желтыми и зелеными горошинами равнялось 3:1. Проведя аналогичные эксперименты для других признаков, Мендель пришел к выводу: существуют гены, которые доминируют над другими и тем самым подавляют их проявление.

Существование доминантных и рецессивных генов объясняло, почему скрещивание особей с одним и тем же выраженным геном может давать потомство с другим выраженным геном — оба родителя являются носителями рецессивного гена, который подавляется доминантным. Несмотря на то что в свое время труды Менделя не получили широкой известности, в них были заложены основы генетики — науки, которая сыграла определяющую роль в развитии современной медицины.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.