Том 31. Тайная жизнь чисел. Любопытные разделы математики - [18]
В честь Флоренс Найтингейл установлен памятник на Ватерлоо-Плейс. Другой, нерукотворный памятник ей воздвигли раненые, которым она спасла жизнь.
Диаграмма Флоренс Найтингейл. Вы можете видеть, как по мере реализации предложенных мер снижалась смертность.
Фрэнсис Гальтон (1822–1911), двоюродный брат Чарльза Дарвина, был метеорологом, астрономом, психологом, изобретателем, антропологом, исследователем и, разумеется, математиком, хотя формально так и не получил образования. Как и его двоюродный брат, он был одним из тех странствующих гениев, благодаря которым Англия достигла вершин науки. Интерес у Гальтона вызывало практически все — он занимался измерением носов, составлял карты женской красоты, изучал самовнушение и законы наследования, был превосходным статистиком и вошел в историю как автор понятий регрессии и корреляции. К несчастью, он запомнился и благодаря противоречивому понятию евгеники, которое ввел в 1865 году.
Первая в истории карта погоды, опубликованная в газете «Таймс» в 1875 году, была работой Гальтона.
Евгенику в общих чертах можно определить как улучшение населения (ранее речь в ней шла о расах) путем подавления отрицательных характеристик, препятствующих прогрессу. На протяжении нескольких десятилетий евгеника была очень модной — к ней положительно относились как правительства разных стран, так и частные лица, к примеру экономист Джон Мейнард Кейнс. Массовые эвтаназии, или плановый геноцид населения, которые стали частью евгенических программ нацистского режима, радикально изменили отношение к этому учению, и сегодня упоминать о нем считается дурным тоном.
С другой стороны, закон Харди — Вайнберга, связанный с цепями Маркова и точками равновесия, неопровержимо показывает, что устранить всех обладателей рецессивного признака в популяции гетерозиготных организмов невозможно: по мере того, как любые «аномалии», часто рецессивные и незаметные, — а также их носители — будут уничтожаться, в силу неумолимых законов наследования доля организмов, обладающих этими «аномалиями», будет возвращаться к исходной.
Евгеника стала политически некорректной, крайне сомнительной с моральной точки зрения и математически ошибочной. Но после недавнего открытия методов изменения генома человека этот вопрос вновь вышел на первый план. Закон Харди — Вайнберга по-прежнему выполняется, однако изменились сами правила игры: кажется возможным изменить ген, определяющий тот или иной рецессивный признак, и определить носителей такого гена, даже если внешне этот признак никак не проявляется. Теперь ученые могут работать напрямую с генами, а не с их носителями. Похоже, что евгеника и Гальтон вновь выходят из тени.
Мы расскажем о двух очень разных талантливых англичанах, которые познакомились благодаря математике.
Великий поэт Альфред Теннисон (1809–1892), более известный как лорд Теннисон, считался лучшим поэтом своего времени и был избран членом Лондонского королевского общества за интерес к науке и ее распространение. Чарльз Бэббидж (1791–1871) также был членом Лондонского королевского общества, философом, инженером, криптографом и прежде всего математиком. Впоследствии Бэббидж стал одним из родоначальников вычислительной техники, автором понятия программируемой вычислительной машины, создавшим примитивное вычислительное устройство, которое он назвал аналитической машиной. Продвинуться вперед ему помешали ограниченные технические возможности того времени. Между паровыми машинами и микросхемами лежит пропасть — столь же глубокая, как и та, что разделяет приспособления эпохи Бэббиджа и современные механизмы.
Будучи членом парламента, Бэббидж отличался противоречивыми инициативами — например, он боролся с уличными шарманщиками, которых считал невыносимыми. Представьте удивление Теннисона, когда он получил от своего коллеги Бэббиджа такое письмо:
«Милостивый государь,
в вашем прекрасном стихотворении «Видение греха» (The Vision of Sin) можно прочесть строки:
Every moment dies a man
Every moment one is born
[Каждую секунду умирает человек
И каждую секунду рождается человек].
Это статистически некорректно. Если бы это в самом деле было так, число живых людей было бы неизменным. Я предлагаю вам заменить эти строки следующими или подобными им:
Каждую секунду умирает человек
Каждую секунду рождается 1 1/16
Хотя 1/16 — лишь приближенное значение вещественного числа, оно достаточно точное, чтобы его можно было привести в стихотворении.
Искренне Ваш,
Чарльз Бэббидж».
Как и следовало ожидать, предложение Бэббиджа не было услышано. Но как можно зайти столь далеко в оценке, или, точнее говоря, отрицании ценности поэзии? Представьте себе, что некто прочел строки Любовь моя, цвет зеленый. Зеленого ветра всплески и заключил, что их автору, Федерико Гарсия Лорке, следовало указать точнее, что к зеленому цвету относятся волны длиной 520–570 нанометров.
В свое время титул лучшего математика мира до самой смерти носил Анри Пуанкаре (1854–1912). Рассказывают, что Джеймс Джозеф Сильвестр (1814–1897) совершил поездку в Париж с единственной целью — лично познакомиться с Пуанкаре, а встретившись с ним, не смог проронить ни слова, словно представ перед живым божеством. Пуанкаре был настолько одарен, что в студенческие годы не записал ни одного конспекта. Этот прекрасный писатель и философ, мыслитель первой величины подошел совсем близко к созданию знаменитой теории относительности. Его результаты, основанные на работах Лоренца и созвучные трудам Фитцджеральда и Минковского, были очень близки к формулировке, которую позднее разработал Эйнштейн.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.
Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению.
Из этой книги читатель узнает о жизни и научных достижениях самых выдающихся женщин-математиков разных эпох. Это Гипатия и Лукреция Пископия, Каролина Гершель и Мэри Сомервилль, Ада Лавлейс и Флоренс Найтингейл, Софья Ковалевская и Эмми Нётер, Грейс Хоппер и Джулия Робинсон. Хотя они жили в разные времена и исследовали разные области математики, всех их объединяла любовь к этой науке, а также стремление сломать сложившиеся в обществе стереотипы. Своим примером они доказали всему миру: женщины обладают такими же интеллектуальными способностями, как и мужчины, и преуспели в математике чуть меньше исключительно по социальным причинам.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.