Том 30. Музыка сфер. Астрономия и математика - [44]
Рассчитать Δβ можно разными способами:
1. Простейший способ — непосредственное измерение по рисунку, приведенному на странице 159: достаточно рассмотреть отношение диаметра Солнца D на рисунке и угловой размер Солнца. Угловой размер Солнца равен 30 минутам дуги, выраженным в радианах. Имеем:
2. Также можно измерить хорды окружности на рисунке. Этот способ точнее, так как измерить длины хорд A>1A>2 и В>1В>2 всегда можно с большей точностью, чем расстояние между этими хордами А’В’.
Рисунок позволяет связать длины хорд A>1A>2 и В>1В>2 с расстоянием между ними, А’В’.
По теореме Пифагора для треугольников SB’В>1 и SA’X>1 получим
3. Вместо расстояний можно отсчитывать время. Достаточно рассмотреть соотношение
где t>A и t>B — время прохождения A>1A>2 и В>1В>2. Обозначив через t>0 гипотетическое время транзита по всему диску Солнца, через t’ — время, соответствующее Δβ, установим соотношение:
Использовать временные интервалы вместо расстояний следует с осторожностью. Как показано на следующем рисунке, следует различать время внешнего касания (C>1 и С>4) и внутреннего касания (С>2 и С>3) Венеры с диском Солнца. Внутренние касания всегда можно определить точнее, несмотря на искажения, вносимые эффектом черной капли. По этой причине в расчетах учитываются только моменты внутреннего касания.
Наиболее точно можно определить моменты внутреннего касания С>2 и С>3, поэтому именно они используются в расчетах.
На основании результатов наблюдений транзита Венеры 1769 года, полученных в Вардё и Папеэте, получим следующие значения (с учетом того, что расстояние АВ по прямой равно 11425 км).
Расстояние от Земли до Солнца, равное 1 астрономической единице, вычисленное тремя описанными выше методами.
Можно видеть, что точность результатов достаточно высока, если принять во внимание простоту использованных методов. Сегодня расстояние от Земли до Солнца, определяемое как 1 астрономическая единица, принимается равным 149,6∙10>6 км. Следует отметить, что точность второго результата, полученного методом измерения хорд, выше, так как измерить хорды можно с большей точностью, чем непосредственно Δβ. Последний метод, в котором учитывается время прохождения, представляет интерес, поскольку позволяет провести более четкую аналогию с современными методами. Однако погрешность при этом выше, так как метод требует использования вспомогательной гипотезы, согласно которой скорость движения Венеры во время прохождения по диску Солнца постоянна в течение всего транзита.
Расстояние от Земли до Солнца, вычисленное в XVIII веке, заключалось на интервале от 145 до 155 млн километров. По результатам наблюдений за прохождением Венеры в XIX веке этот результат был улучшен, а максимальная точность была достигнута в 2000 году с помощью радара. Сегодня расстояние от Земли до Солнца принимается равным 149,597870691∙10>6 км.
Глава 5. Определение часовых линий наклонных солнечных часов
Солнечные часы, как правило, устанавливаются на стенах зданий. Если стена здания не расположена точно вдоль линии восток — запад, часы обычно направлены в сторону горизонта, по которому движется Солнце в течение дня. Чтобы провести часовые линии на циферблате вертикальных неориентированных солнечных часов (они называются наклонными), нужно знать угол, под которым располагается стена. Далее мы объясним, как можно вычислить этот угол а — азимут стены. Пока что будем предполагать, что угол а известен.
Часовые линии в этом случае строятся так же, как и в других разновидностях солнечных часов, то есть путем проецирования часовых линий экваториальных, горизонтальных и вертикальных часов на плоскость циферблата наклонных часов, как показано на иллюстрации. Следует напомнить, что линия, указывающая полдень на циферблате любых вертикальных часов, совпадает с направлением отвеса, закрепленного в той же точке, что и гномон. Гномон наклонных часов, как и любых других солнечных часов, направлен вдоль оси вращения Земли.
Спроецировав часовые линии экваториальных солнечных часов на плоскость циферблата наклонных часов, получим, что ctg γ = sin a ctg Н sec ф — cos a tg ф. При Н =15°, следовательно, γ будет углом, под которым расположена часовая линия, указывающая 11 и 13 часов. При Н = 30° угол γ укажет расположение часовой линии 10 и 14 часов и так далее до линии 6 и 18 часов.
По теореме синусов для треугольника CFA имеем:
где sin(180 — (а — α)) = sin(a — α) с учетом того, что а и α отсчитываются в противоположных направлениях. По формуле sin(a — α) = sina cosα — cosa sinα имеем:
Однако в треугольнике ABC, определяемом осью мира, tg ф = ВС/АС, а в треугольнике BFC на плоскости циферблата наклонных часов tg γ = CF/BC. Упростив эти выражения, получим tg γ tg ф = CF/AC, откуда следует:
Как мы уже указывали, для горизонтальных часов выполняется равенство tg α = tg Н sin ф, откуда следует:
Умножив на tg ф, получим формулу, определяющую положение часовых линий на циферблате наклонных часов:
где γ — угол между линией, указывающей 12 часов, и искомой часовой линией, Н = 15°, 30°, 45°… соответственно, как показано на рисунке выше.
Чтобы определить азимут стены, нужно вбить в нее гвоздь, подвесить на него веревку с грузом и использовать пузырьковый уровень, угольник и транспортир, расположив их так, как показано на следующей странице. Измерения нужно производить в солнечный полдень. Азимут стены
Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.
Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.
В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.
Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.