Том 20. Творчество в математике. По каким правилам ведутся игры разума - [6]
Математическое творчество не заключается в комбинировании уже известных знаний — на это способен и компьютер, однако многие его комбинации не будут представлять никакого интереса. Для Пуанкаре творить значило выбирать полезные и очень редкие комбинации среди многочисленных бесполезных.
Пуанкаре делил творческий процесс на этапы. Он начинал с долгой и трудной работы над темой в течение нескольких недель. Затем какое-то необычное событие (например, выпитая чашка черного кофе) мешало ему заснуть, и его начинали одолевать идеи. Именно в этот момент отдельные идеи переплетались и соединялись в единое целое. Далее полученные результаты улучшались, после чего по аналогии к нему приходила новая идея. Затем начиналась новая фаза, во время которой ученый занимался чем-то далеким от математики (например, отправлялся на экскурсию), отвлекаясь от своих размышлений. И во время какого-то вполне обычного действия (например, когда он садился в автобус) Пуанкаре понимал ключевую взаимосвязь между элементами, которые казались не зависящими друг от друга (например, между фуксовыми функциями и неевклидовой геометрией). Вернувшись домой, он проверял правильность пришедшей к нему мысли.
Внезапное озарение, посетившее Пуанкаре, было результатом длительной сознательной и подсознательной умственной деятельности. И этот подсознательный труд, который порой оказывается более продуктивным, чем сознательный, по всей видимости, начинается только после того, как проведен определенный объем сознательной работы, как если бы мы оставили компьютер в спящем режиме или свернули окно одной программы и запустили другую. Однако программа, окно которой мы свернули, продолжает работу и выдает решение, о котором мы узнаем только тогда, когда открываем ее окно снова, щелкнув на него или закрыв все остальные программы. Пуанкаре особо выделял роль осознанного труда: даже если он казался безрезультатным, без него совершить открытие невозможно.
Нам неизвестно, какие умственные процессы привели Архимеда к его открытиям, но, возможно, он чувствовал нечто подобное. Те, кто занимался математикой на профессиональном или любительском уровне, наверняка понимают, что Пуанкаре имел в виду.
* * *
АНРИ ПУАНКАРЕ (1854–1912)
Этот знаменитый французский математик, помимо прочего, известен благодаря топологической гипотезе, носящей его имя, которую, по меньшей мере в общих чертах, доказал российский математик Григорий Перельман в 2002 году. Нить на двумерной поверхности сферы можно непрерывно сворачивать, пока она не обратится в точку. Гипотеза Пуанкаре гласит, что аналогичная ситуация возможна для сферы с трехмерной поверхностью, находящейся в четырехмерном пространстве.
На иллюстрации показана петля, затягивающаяся вокруг точки на поверхности сферы.
* * *
Именно так математическое творчество традиционно рассматривается в психологии. Однако следует выделить еще несколько моментов помимо тех, на которые нам указал великий француз. Один из них состоит в том, что умелый математик способен связать воедино вещи, которые кажутся совершенно разными. Пуанкаре уделял этому огромное внимание и даже говорил, что математик — это человек, дающий разным вещам одно наименование. Это умение важно не только в математическом творчестве, но и в творчестве вообще. Еще один момент, который тесно связан с предыдущим и который выделяют как Пуанкаре, так и Курант и Роббинс (1996), Пойа (1988) и Лакатос (1994), заключается в том, что в математическом творчестве важную роль играет аналогия.
Мы говорили, что основная составляющая математического творчества — аналогия. Более того, если вы хотите создать нечто новое в математике, мыслите аналогиями и отставьте логику в сторону. А что еще оказывает влияние на творческий процесс?
В психологическом подходе к мыслительному процессу проводится различие между логическим и творческим мышлением: в психологии утверждается, что существует некая мыслительная деятельность, отличная от способности делать выводы на основе исходных утверждений и четко определенных правил. В чем же именно заключается творчество, результатом которого является нечто новое, оригинальное и ценное? Уже Платон устами Сократа сформулировал парадокс:
«Как собираешься ты искать нечто, природа чего тебе совершенно неизвестна? Что из неизвестного тебе нужно найти? И если волею случая ты найдешь это, как ты узнаешь, что это именно то, что ты ищешь, если тебе это неизвестно?»
Не следует отвергать возможность того, что найти нужное нам поможет случай. Внезапное озарение, о котором мы говорили выше, порой помогает установить нужную связь между совершенно разными идеями. Эта связь, которая помогает решить задачу, является той самой единственной из множества, о которой говорил Пуанкаре. Тем не менее что-то подсказывает, что идея возникает не по воле случая или, по меньшей мере, не только по воле случая.
Психологи выделяют четыре этапа творческого процесса.
1. Подготовка.
2. Замысел.
3. Озарение.
4. Подтверждение.
На первом этапе мы уточняем суть проблемы, собираем исходные данные, уточняем формулировку задачи и оцениваем возможные стратегии и взаимосвязи.
В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.
Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.