Том 20. Творчество в математике. По каким правилам ведутся игры разума - [3]

Шрифт
Интервал


Логика — обязательный элемент математики. Именно логика — залог корректности математических выводов, строгий судья, определяющий их истинность или ложность. Однако математику нельзя свести исключительно к логике. Если бы теоремы можно было вывести с помощью формальных логических правил, с этой задачей вполне справился бы компьютер, выдав нам множество новых теорем. К сожалению, математики обычно публикуют окончательные и проверенные результаты своего труда, не позволяя нам увидеть путь, которым они шли.

Должно пройти много времени, прежде чем этот порядок вещей изменится. Математические блюда по-прежнему подаются на роскошной посуде и не содержат ни малейших изъянов. Мудрец-повар пробует свое блюдо снова и снова, пока не решит, что оно готово и его можно подавать. Он ищет ошибки и исправляет их, если находит. Если же в рецепт закралась неустранимая ошибка, такое блюдо немедленно отвергается и возвращается на кухню — именно там, а не в зале ресторана, вершится математика. Именно там готовятся аксиомы, теоремы и доказательства. Именно там совершаются ошибки, проверяются гипотезы и отвергаются идеи. Фартуки поваров покрываются грязными пятнами, а сами повара впадают в отчаяние, оттого что логика не идет на поводу у их интуиции. И тогда они тысячу раз проклинают свое ремесло, которое многие считают божественным.

Однако математическую кухню питает не только огонь логики: на ней не обойтись без интуиции, аналогий, экспериментов, гипотез, то есть без мысли. Так как все люди мыслят по-разному или руководствуются разными интересами, на размышления математиков и их деятельность влияют общество и культура. Почему одна теорема более ценна, чем другая? Почему все пытаются доказать одни теоремы и не уделяют внимания другим? С помощью логики можно сделать бесконечное множество тривиальных умозаключений, которые не представляют никакой ценности. Развитие математической мысли вызвано интересом людей к решению задач, теоретических и практических, полезных и бесполезных, а сами задачи могут отражать стремление к знаниям или рассматриваться как личный вызов.

Полнее и точнее всего этот аспект математики описан в классических научно-популярных книгах, в частности «Что такое математика?» американских авторов Рихарда Куранта и Герберта Роббинса (первое издание вышло в 1941 году, с тех пор книга неоднократно переиздавалась), в более поздней книге «Математический опыт» Филипа Дэвиса и Рубена Херша (1999) или в книге последнего «Что же такое математика на самом деле?» (1997). В этой книге Херш приводит простой и понятный пример: «Формулу 2 + 2 = 4 можно доказать как теорему в некоторой модели аксиом, однако ее сила и убедительность происходят из физической модели — например, ее правильность нетрудно подтвердить с помощью монет или камней». Более того, логика, используемая в формальном доказательстве, которое упоминает Херш, появилась значительно позже, чем подсчет камней. Курант и Роббинс, в свою очередь, подчеркивают важнейшую роль, которую играют в развитии математики эксперимент, интуиция и аналогия:

«…хотя принципа математической индукции совершенно достаточно для того, чтобы доказать эту формулу — раз она уже написана, однако доказательство не дает решительно никаких указаний, как прийти к самой этой формуле… Тот факт, что доказательство теоремы заключается в применении таких-то простых логических правил, не оказывает ни малейшего влияния на творческое начало в математике, роль которого — делать выбор из бесконечного множества появляющихся возможностей. Вопрос о том, как возникает гипотеза, — из той области, в которой нет никаких общих правил; здесь делают свое дело эксперимент, аналогия, конструктивная индукция».

Логика очень важна в математике, однако она не настолько тесно связана с открытиями и изобретениями, как может показаться. Логика не указывает путь и не подсказывает, как найти решение. Этот путь открывают эксперимент, аналогия и интуиция, а затем логика превращает эти нехоженые тропинки в широкую магистраль, по которой может проехать любой. Проиллюстрируем это на примере, рассмотрев известную геометрическую задачу, решенную благодаря счастливому озарению.


Счастливое озарение

Даны две точки Р и и отрезок s, как показано на рисунке. Мы хотим попасть из точки Р в точку Q, пройдя через некоторую точку на отрезке s. Какой точке отрезка соответствует кратчайшая траектория?



Чтобы решить эту задачу, представим, что отрезок — это зеркало. Построим отражение точки Q в этом зеркале и обозначим его Q'. Проведем отрезок, соединяющий Р и Q', который пересечет s в точке X.



Отрезок PQ' определяет кратчайший путь между Р и Q', а точка пересечения этого отрезка с отрезком определяет положение точки X. Теперь осталось вновь использовать симметрию, отразить отрезок XQ' в зеркале s и увидеть, что длина отрезка XQ равна длине отрезка XQ'. Мы получили ломаную линию PXQ, длина которой равна длине отрезка PQ'.



Следовательно, кратчайший путь из точки Р в точку Q, проходящий через точку на отрезке s, будет лежать через точку X.

Как автору этого решения пришла в голову идея использовать симметрию? Как его только осенило? И такое удивление вызывает любая полезная идея, которая пришла не нам в голову. Тем не менее математическому творчеству и решению задач можно научиться, и наша книга — именно об этом.


Еще от автора Микель Альберти
Том 40. Математическая планета. Путешествие вокруг света

В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Золотое сечение. Математический язык красоты

Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.


Дилемма заключенного и доминантные стратегии. Теория игр

Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.