Том 20. Творчество в математике. По каким правилам ведутся игры разума - [10]

Шрифт
Интервал



Следующий квадрат получается, если добавить к 25 две полосы длиной в 5 единиц и еще один единичный квадрат, который располагается в углу. Иными словами, 36 = 25 + 2·5 + 1. Аналогично можно показать:

6>2  = 36 = 25 + 2·5 + 1

5>2 = 25 = 16 + 2·4 + 1

4>2 = 16 = 9 + 2·3 + 1

З>2 = 9 = 4 + 2·2 + 1

2>2 = 4 = 1 + 2·1 + 1.

Мы обнаружили ключ к задаче. Разности между соседними квадратными числами всегда нечетны, потому что для построения следующего полного квадрата к предыдущему нужно добавить единичный квадрат.


Подтверждение

Мы хотим окончательно доказать нашу гипотезу, не проводя экспериментов над всеми натуральными числами и не используя геометрическую аналогию. Эксперимент и аналогия помогают сформулировать теорему или понять явление, но не позволяют подтвердить правильность полученного результата для всех квадратов.

Вернемся к исходному наблюдению в поисках достаточно убедительных аргументов. В последней таблице в ряду исходных чисел и в ряду их квадратов четные и нечетные числа чередуются. Иными словами,

четное>2 = четное;

нечетное>2 = нечетное.

Разность между четным и нечетным числом всегда будет нечетной:

четное — нечетное = нечетное;

нечетное — четное = нечетное.

Можно сделать вывод: разность между последовательными квадратными числами всегда будет нечетной. Должны ли мы принять этот вывод как окончательный?

Несомненно, мы совершенно убеждены в его истинности. Но выполнено ли это доказательство по всем правилам? Многие считают, что алгебраическое доказательство — более убедительное и независимое, чем интуитивное.

Пусть n — произвольное натуральное число. Следующим за ним, по определению, является n + 1. Возведем оба этих числа в квадрат и вычислим их разность:

(+1)>2n>2 = n>2 + 2+ 1 — n>2 = 2n + 1.

Число 2+ 1 всегда будет нечетным, так как 2четное для любого n. Следовательно, разность между квадратами соседних чисел всегда будет нечетным числом. Более того, последовательность разностей будет представлять собой последовательность всех нечетных чисел вида 2n + 1.

Те, кто полагает, что эти рассуждения более убедительны и их можно с большей уверенностью принять в качестве окончательного доказательства нашей гипотезы, могут посмотреть на них еще раз и убедиться, что они тождественны геометрическим рассуждениям, приведенным выше. Привычное использование n для обозначения любого натурального числа как бы уводит нас в сторону от интуитивно понятного геометрического доказательства, которое раскрывает суть проблемы.

Тот факт, что разность между (+ 2)>2 и n>2 равна 2n + 1, доказывает истинность гипотезы, а геометрическое доказательство помогает понять это. О подобном говорил Херш: формулу 2 + 2 = 4 можно доказать, применив аксиоматику и правила формальной логики, однако истинная причина убедительности этой формулы в том, что ее можно подтвердить, просто переставляя камни. На следующей схеме вкратце описан путь, по которому мы должны идти в математическом творчестве к его конечной цели — объяснению явлений.



Логика не создает, но накладывает требования

Логика подчиняется аксиомам и правилам, созданным много лет назад. Основой ее является сам образ наших мыслей. Формалисты сводят математику к последовательностям символов, которые подчиняются законам логики. Однако философский взгляд на математику, о котором идет речь на страницах этой книги, состоит в ином.

Да, логика лежит в основе аргументации и проверки математических выводов, однако для совершения открытий одной логики недостаточно. Математическое творчество выходит за рамки логики. Примером этому является теорема:

Всякая степень двойки является четным числом.

Такие утверждения могут быть абсолютно логичными, но не будут содержать ничего нового ввиду своей очевидности. Их нельзя считать продуктом творчества.

Применение правил логики для получения новых истинных высказываний из уже известных — это не творчество. Это может сделать даже компьютер. Творчество подразумевает отбор или поиск значимых результатов. Оно отвечает на вопросы, возникающие в социальном и культурном контексте, который машина не способна учесть. Идеи и теории выдвигают не машины, а люди. Логика подобна сборочному конвейеру, запрограммированному на производство определенной машины. Но математика — нечто большее, чем промышленное производство. Более того, некоторые теоремы, созданные людьми, возможно, никогда не смогла бы получить машина.

Также не стоит забывать о том, что творчество означает ответственность. Всякое творчество имеет свои последствия, как, например, тогда, когда его стимулом является желание сохранить согласованность системы. Именно это произошло с правилом знаков:

— х — = +.

Это правило было установлено для того, чтобы сохранить согласованность умножения для целых отрицательных чисел, и возникло вследствие желания сохранить для таких чисел дистрибутивность умножения. Дистрибутивность операции означает, что для любых трех чисел а, b и с выполняется равенство:

а·(Ь + с) = а·а·с.

* * *

АЛГЕБРАИЧЕСКИЕ СВОЙСТВА ЭЛЕМЕНТАРНЫХ АРИФМЕТИЧЕСКИХ ДЕЙСТВИЙ

На множестве С, на котором определены две бинарные операции, обозначаемые знаками


Еще от автора Микель Альберти
Том 40. Математическая планета. Путешествие вокруг света

В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.


Рекомендуем почитать
Знание-сила, 2009 № 09 (987)

Ежемесячный научно-популярный и научно-художественный журнал.


Знание-сила, 2008 № 11 (977)

Ежемесячный научно-популярный и научно-художественный журнал.


Знание-сила, 2008 № 02 (968)

Ежемесячный научно-популярный и научно-художественный журнал.


Знание-сила, 2007 № 02 (956)

Ежемесячный научно-популярный и научно-художественный журнал.


Знание-сила, 1999 № 04 (862)

Ежемесячный научно-популярный н научно-художественный журнал для молодежи.


Популярная палеогеография

Автор рассказывает о достижениях палеогеографии — науки, изучающей физико-географические условия минувших геологических эпох. История Земли и жизни на ней, от самого образования планеты до современности; дрейф материков и новая глобальная тектоника; процессы горообразования и климат прошлых эпох — вот только некоторые из тем, которым посвящена эта увлекательная книга.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Том 13. Абсолютная точность и другие иллюзии. Секреты статистики

Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.


Дилемма заключенного и доминантные стратегии. Теория игр

Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.