Том 18. Открытие без границ. Бесконечность в математике - [7]
будет находиться между 6 и 7.
Аналогичным образом можно найти число, расположенное между любыми другими двумя числами. Если даны два числа А и В, то обязательно будет выполняться соотношение
Однако для этого необходимо, чтобы последовательность чисел, с которой мы работаем, содержала дробные, или рациональные, числа.
Так как описанные выше действия можно повторять бесконечно, можно утверждать, что между двумя любыми рациональными числами всегда будет располагаться бесконечно много других рациональных чисел. Именно в этом и заключается свойство плотности, о котором мы говорим. Плотность делает бессмысленным понятие «следующего» числа. Говоря о множестве натуральных чисел, можно смело утверждать, что за числом 12 следует 13, однако на множестве рациональных чисел говорить о числе, следующем за N, не имеет смысла: если таким числом является М, то всегда существует число
идущее перед М.
Плотность отражает понятие бесконечности с непривычной стороны. Приведем пример из геометрии. Когда мы представляем себе прямую, мы считаем, что она продолжается бесконечно с обоих концов. В нашем представлении эта прямая бесконечно велика. Аналогом дробных чисел из предыдущего примера будут точки на отрезке прямой: между двумя точками всегда находится третья, и число точек отрезка также бесконечно велико.
Толковый словарь русского языка дает слову «дискретный» такое определение: «прерывистый, дробный, состоящий из отдельных частей», что схоже с определением дискретной величины в математике: «величина, принимающая конечное число отдельных значений, например число деревьев в лесу, число солдат в армии и пр.».
Как вы увидите чуть позже, упоминание «отдельных частей» отсылает нас к высшим разделам математики, так как нужно очень четко определить значение слова «отдельный», что сделать не так просто, как может показаться.
Чтобы лучше разобраться во всех тонкостях бесконечности (как бесконечно больших, так и бесконечно малых величин), нужно четко понимать значение понятий «непрерывное» и «дискретное». Рассмотрим разницу между ними на простом примере. Представьте себе два одинаковых сосуда, в одном из которых находится вода, а в другом — небольшие пластиковые шарики. Перельем содержимое первого сосуда в кувшин. Мы увидим, как течет жидкость и как постепенно уровень воды в кувшине поднимается. Если мы будем пересыпать в кувшин шарики, все будет выглядеть и восприниматься совершенно иначе: мы будем видеть, как шарики по одному падают в кувшин. Разница между первым и вторым случаем будет заметна не только на глаз, но и на слух: в первом случае звук будет непрерывным, во втором мы сможем различить звук, издаваемый каждым шариком при падении в кувшин.
В первом случае мы имеем дело с непрерывным процессом, во втором случае — с дискретным.
Рассмотрим другой пример: с 9 утра до 9 вечера время течет непрерывно.
Но если мы посмотрим на расписание поездов, которые отправляются с 9 утра до 9 вечера, то увидим дискретное множество значений. Если один поезд отправляется в 10 утра, а следующий — в 11, то между значениями 10 и И нет никаких других, то есть эти значения дискретны. Напротив, течение времени между 10 и 11 часами непрерывно, и время может равняться, например 10 часам 25 минутам и 0,34628761720041244474 секунды.
Можно подумать, что понятия дискретного и непрерывного достаточно просты и интуитивно понятны. Тем не менее на протяжении многих лет они были предметом жарких споров: с одной стороны, они вовсе не просты, а с другой — потому что, как вы увидите чуть позже, интуиция не всегда хороший советчик, так как один и тот же предмет может казаться нам дискретным или непрерывным в зависимости от масштаба наблюдений.
Споры о дискретном и непрерывном вращаются вокруг понятия бесконечности, поэтому неудивительно, что они протекают скорее в философской плоскости, подобно противостоянию между пифагорейской и элейской школами в Древней Греции, которое ярче всего проявилось в парадоксах Зенона.
Ключевой вопрос состоит в том, является наш мир дискретным или непрерывным. Ответ на него очень сильно зависит от наших ощущений и, как следствие, лежит в плоскости теории познания. Не предаваясь философским размышлениям и не углубляясь в психологию, в начале XX века физики и математики сделали свой выбор в пользу концепции дискретного мира: появилась квантовая механика и так называемая дискретная математика.
Говорят, что важнейшее различие между наукой и технологией состоит в том, что первая меняет наше видение мира, вторая — наш образ жизни в этом мире. Можно утверждать, что изобретение механических часов стало одним из ключевых моментов в истории человечества и оказало наибольшее влияние на жизнь людей. Кроме того, благодаря часам, в создании которых математика сыграла определяющую роль, время перестало быть непрерывным и превратилось в дискретный ряд интервалов.
Первые механические часы появились в XIV веке (в Китае — в X веке), и сегодня они считаются устаревшими. Стрелки этих часов приводились в движение противовесом, который опускался под действием силы тяжести. Противовес подвешивался на веревке, намотанной на цилиндр, при движении противовеса цилиндр вращался и приводил в действие часовой механизм. У первых часов не было ни циферблата, ни стрелок, и время отмерялось ударами колокола. Мы говорим, разумеется, о больших городских часах. Во многих языках слово «часы» также означает «колокол», как, например, английское clock или французское cloche. В колокола бил звонарь, который следил за ходом времени.
Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.