Том 16. Обман чувств. Наука о перспективе - [3]
— Теперь, маэстро, я понимаю, почему вы изобразили собор, поменяв стороны местами. Когда ваша картина отражается в зеркале, все встает на свои места. Отверстие указывает точку, из которой нужно смотреть. Я заметил еще кое-что: когда я вытягиваю руку, в которой держу зеркало, расстояние между глазом и зеркалом, если измерить его маленькими локтями, которыми измеряется собор на картине, будет равно расстоянию от того места, где мы находимся, до настоящего собора. Брунеллески просиял.
— Именно в этом, — воскликнул, почти вскричал он, — и состоит основа моих рассуждений. Как вы можете видеть, картину невозможно отличить от того, что видят ваши глаза. Я обнаружил, любезные друзья, простой метод изобразить всё, что видит глаз, с точно такими пропорциями и размерами, чтобы при взгляде на картину вы видели точно то же самое, что видел художник. И должен сказать вам, что этот метод подчиняется законам математики.
Последняя фраза заставила собравшихся удивиться и восхититься.
— Теперь всякий, кто захочет посвятить себя искусству живописи, должен будет изучить Евклида, а затем, используя полученные знания, обучиться прекрасной науке перспективы. Всякий, кто хочет стать настоящим художником, должен, кроме того, быть увлеченным читателем, изучить труды древних мудрецов и подобно любому другому образованному человеку создать новое на основе того, что он изучил.
Воссозданная нами сцена представляет собой один из ключевых моментов в истории искусства, равно как и в истории математики. В этот момент искусство и математика стали единым целым. В этой книге мы покажем, что подобные моменты происходили не раз.
Филиппо Брунеллески создал perspectiva artificialis, или математическую перспективу, в противоположность perspectiva naturalis и оптике, которые изучал Евклид. Однако никаких рукописей Брунеллески, где бы излагалась его теория, не сохранилось. Несколько лет спустя Леон Баттиста Альберти, представитель семейства богатых торговцев и банкиров, высланных из Флоренции в 1401 году по политическим причинам, вернулся в родной город и присоединился к гуманистическим кругам столицы флорентийской республики. Он подружился с выдающимися художниками того времени: Донателло, Гиберти, Лукой делла Роббиа и в особенности с Брунеллески. В 1435 году Альберти написал трактат «О живописи», посвященный Брунеллески, в котором впервые описывались правила математической перспективы.
* * *
БРУНЕЛЛЕСКИ. РАССУЖДЕНИЯ, ПОДТВЕРЖДЕННЫЕ ПРАКТИКОЙ
Флорентийский архитектор, скульптор, художник и математик Филиппо Брунеллески (1377–1446) известен прежде всего как автор большого купола собора Санта-Мария-дель-Фьоре во Флоренции. Скорее всего, он обучался грамоте и азам математики в одной из школ абака, существовавших во Флоренции в XIV–XV веках. Его отец был нотариусом и хотел, чтобы Филиппо, второй из его трех сыновей, стал чиновником. Для получения нужного для этого образования он отдал сына в школу абака.
Увидев творческие способности юноши, отец в конце концов изменил свое решение и разрешил ему учиться на ювелира. Несколько лет спустя уже как мастер-ювелир Брунеллески вступил в цех Арте делла Сета, куда входили ткачи, ювелиры, граверы, золотых и бронзовых дел мастера. По заказу этого цеха он впоследствии выполнил один из самых важных проектов в своей карьере — строительство Воспитательного дома. Джорджо Вазари в своих знаменитых «Жизнеописаниях» пишет:
«Когда Паоло даль Поццо Тосканелли [известный космограф, сын физика Доменико Тосканелли; считается, что именно у него возникла идея о путешествии в Индию через Атлантический океан, которое впоследствии совершил Колумб] завершил обучение, он собрал друзей на праздничный ужин в саду. Он также пригласил Филиппо, который, услышав разговор об искусстве математики, завязал беседу с тем, кто учился геометрии у господина Паоло. Хотя Филиппо не посещал занятий, многие часто думали иначе, столь точно он рассуждал обо всем, используя знания, полученные на практике».
Он интересовался математикой и геометрией и сформулировал первые математические правила перспективы. Среди его последователей был Мазаччо.
Брунеллески был художником, скульптором и архитектором. В 1420 году он вместе с Лоренцо Гиберти выиграл конкурс на право построить купол собора Санта-Мария-дель-Фьоре. В итоге единоличным автором проекта и ответственным за его исполнение стал Брунеллески. Работы были завершены в 1434 году.
Помимо Воспитательного дома и купола Санта-Мария-дель-Фьоре по его проекту уже после его смерти, был построен Палаццо Питти.
Филиппо Брунеллески создал современный образ архитектора в глазах профессиональных кругов и широкой публики. Архитектор перестал быть простым ремесленником, ответственным за «механическую» часть постройки и ее техническую реализацию, какими были его предшественники, и стал играть основную роль в создании проекта. Архитектура стала свободным искусством, основанным на математике, геометрии, а также знаниях искусства и истории.
Филиппо Брунеллески. Портрет кисти Мазаччо. Капелла Бранкаччи, Флоренция.
>(источник: FMC)
* * *
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.
Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.
В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.
Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.