Теория струн и скрытые измерения Вселенной - [155]

Шрифт
Интервал

(исчисление).

Матрица — двухмерный (прямоугольный или квадратный) массив чисел или более сложных алгебраических выражений. Матрицы можно складывать, вычитать, перемножать и делить, используя относительно простой набор правил. Матрицу можно записать в сокращенном виде как набор элементов вида a>ij где i — номер строки, а j — номер столбца.

Метрика — математический объект, в общем виде представляемый тензором, используемый для измерения расстояний в пространстве или многообразии. В искривленном пространстве метрика показывает, в какой мере фактическое расстояние отличается от числа, полученного по теореме Пифагора. Знание метрики пространства эквивалентно пониманию геометрии этого пространства.

Минимальная поверхность — поверхность, площадь которой локально минимизирована, что означает, что ее площадь нельзя уменьшить путем замены небольших участков поверхностей участками поверхности другой формы.

Мировой лист — поверхность, вычерчиваемая струной, движущейся в пространстве-времени.

Многогранник (полиэдр) — геометрический объект, состоящий из плоских граней, соприкасающихся прямыми краями. Трехмерные многогранники состоят из многоугольных граней, которые соприкасаются краями, образуя ребра, а ребра, в свою очередь, сходятся в вершинах. В качестве примера многогранников можно привести тетраэдр и куб.

Многообразие Калаби-Яу — широкий класс геометрических пространств с нулевой кривизной Риччи, возможность которых была показана при доказательстве гипотезы Калаби. Эти пространства, или формы, являются комплексными, что означает, что они должны быть четной размерности. Случай шестимерного пространства представляет особый интерес для теории струн, где многообразие служит в качестве носителя шести скрытых, или дополнительных, измерений.

Многообразие — топологическое пространство, которое локально является евклидовым, что означает, что каждая точка лежит в месте, напоминающем плоское пространство.

Многоугольник (полигон) — плоская замкнутая ломаная, построенная из отрезков прямых. Например, треугольник, квадрат или пятиугольник.

М-теория — теория, которая объединяет пять отдельных теорий струн в одну всеобъемлющую теорию с одиннадцатью пространственно-временными измерениями. Основные составляющие М-теории: браны, в частности двухмерные (М2) и пятимерные (M5). В М-теории струны суть одномерные браны. Термин М-теория был введен Эдвардом Виттеном, который, главным образом, заложил ее основы во время «второй струнной революции» в 1995 году.

Наклон — термин, обозначающий крутизну или градиент кривой, — мера изменения крутизны по вертикали по сравнению с ее изменениями в горизонтальном направлении.

Нарушение симметрии — процесс, который понижает количество наблюдаемых симметрий в системе. Имейте в виду, что после нарушения симметрии она все еще может существовать, хотя является скорее скрытой, чем видимой.

Натяжение — величина, отражающая способность сопротивления струны к растяжению или изгибу. Натяжение струны соответствует линейной плотности энергии.

Неевклидова геометрия — геометрия, которую применяют к неплоским пространствам, таким как сфера, где параллельные прямые, вопреки пятому постулату Евклида, могут пересекаться. В неевклидовом пространстве сумма углов треугольника может быть меньше или больше 180 градусов.

Нейтронная звезда — звезда большой плотности, почти полностью состоящая из нейтронов, которая формируется в процессе гравитационного коллапса массивной звезды, исчерпавшей свое ядерное топливо.

Не-кэлерово многообразие — класс комплексных многообразий, который включает кэлеровы многообразия, но также включает многообразия, которые не могут поддерживать кэлерову метрику.

Нелинейное уравнение — уравнение, которое не является линейным, то есть изменение одной переменной может привести к непропорциональному изменению другой переменной.

Ньютоновская постоянная — коэффициент пропорциональности G, который связывает силу гравитации теории Ньютона с массами тяготеющих тел и расстоянием между ними. Хотя закон всемирного тяготения Ньютона вытеснен общей теорией относительности Эйнштейна, он все же остается хорошим приближением во многих случаях.

Общая теория относительности — теория Альберта Эйнштейна, описывающая всемирное тяготение как геометрию пространства-времени.

Ортогональный — перпендикулярный.

Параллельный перенос — способ перемещения векторов вдоль траектории на поверхности или многообразии, при котором сохраняются длины этих векторов, а также углы между любыми двумя векторами. Параллельный перенос легко наблюдать на плоской двухмерной плоскости, но в более сложных, искривленных пространствах, возможно, придется решать дифференциальные уравнения, чтобы определить точный способ перемещения векторов.

Планковская шкала — масштаб длины (около 10>-33 сантиметра), времени (около 10>-43 секунды), энергии (около 10>28 электрон-вольт) и массы (около 10>-5 грамм), на котором необходимо учитывать влияние квантовых эффектов на гравитацию.

Платоновы тела — пять правильных выпуклых многогранников: тетраэдр, гексаэдр (куб), октаэдр, додекаэдр и икосаэдр, которые удовлетворяют следующим свойствам: грани многогранников состоят из конгруэнтных правильных многоугольников, ребра имеют одинаковую длину, а в каждой вершине сходится одно и то же количество граней. Греческий философ Платон предположил, что элементы Вселенной состоят из этих твердых тел, которые впоследствии были названы в его честь.


Рекомендуем почитать
Сферы света [Звезды]

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Удивительная астрономия

Книга посвящена чрезвычайно увлекательному предмету, который, к сожалению, с недавних пор исключен из школьной программы, – астрономии. Читатель получит представление о природе Вселенной, о звездных и планетных системах, о ледяных карликах и огненных гигантах, о туманностях, звездной пыли и других удивительных объектах, узнает множество интереснейших фактов и, возможно, научится мыслить космическими масштабами. Книга адресована всем, кто любит ясной ночью разглядывать звездное небо.


Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории

Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы — Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мультивселенные — вот далеко не полный перечень обсуждаемых вопросов.Используя ясные аналогии, автор переводит сложные идеи современной физики и математики в образы, понятные всем и каждому.


Большой космический клуб. Часть 1

Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.


Пятьдесят лет в космической баллистике

Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.


Рюрик

Исторический триллер.Россия в 9 веке разбита на мелкие княжества, которые враждуют между собой.Князю Гостомыслу предсказывают, что он пригласит править к себе в Новгород — врага своего. Кто он? Сбудутся ли предсказания?А пока русскую землю раздирают на части, то норманны, то варяги. Пришло время выбрать одного правителя на Руси. Местный князь Вадим и его жена (колдунья) — тоже имеют амбициозные планы. И они хотят силой завоевать все славянские княжества. Приходится Гостомыслу просить помощи у своего внука — финского принца Рюрика.


Игорь

Исторический триллер.Сейчас уже мало кто верит в колдовство и сверхъестественные силы. И уж, конечно, мало найдётся людей, которые знают, что такое честь и рыцарское достоинство. А в девятом веке новой эры эти понятия были, почти обыденными.В этой книге рассказывается о том, как в седой древности русские князья Игорь и Олег создавали новое государство Киевскую Русь. Преодолев огонь сражений, колдовские силы и коварство врагов, они добились своего, и заветная мечта отца князя Игоря Рюрика воплотилась в жизнь.