Теория струн и скрытые измерения Вселенной - [14]
Как видите, мои слова о том, что геометрия наряду с физикой и космологией является бесценным орудием для раскрытия секретов Вселенной, не были пустым хвастовством. Более того, если принять во внимание последние успехи математики, которые будут описаны в этой книге, прогресс в области наблюдательной космологии и возникновение теории струн, пытающейся осуществить никому не удавшийся до сих пор великий синтез, складывается впечатление, что эти три направления исследований должны сойтись в одной точке. Следовательно, человеческое познание сейчас стоит на пороге выдающихся открытий и готово сделать огромный шаг вперед, причем геометрия во всех смыслах командует парадом.
Следует помнить, что, куда бы мы ни двигались в области геометрии и что бы мы ни делали, мы не начинаем наш путь с чистого листа. Мы всегда ссылаемся на то, что было установлено до нас: гипотезы, доказательства, теоремы или аксиомы, используя фундамент, который в большинстве случаев был возведен за тысячи лет до этого. В этом смысле геометрию, как и другие науки, можно считать тщательно продуманным строительным проектом. В первую очередь закладывается фундамент, и если он заложен удачно, так сказать, положен на твердую поверхность, то устоит и само здание и надстройки на его крыше, если, конечно, они также сделаны с соблюдением разумных принципов.
В этом, по сути, и состоит красота и сила моего призвания. Если речь идет о математике, от нее всегда ожидают абсолютно точных утверждений. Математическая теорема — это точное утверждение, остающееся непреложной истиной вне зависимости от пространства, времени, мнения людей и авторитетов. Эта особенность математики резко отличает ее от эмпирических наук, в которых основным методом исследования является постановка экспериментов, по результатам которых и принимается или не принимается то или иное утверждение (конечно, после достаточно большого испытательного срока). В этом случае при последующей проверке результаты могут быть пересмотрены, и нельзя быть уверенными на сто процентов, что установленный вами факт — истина в последней инстанции.
Конечно, часто удается найти более общий и совершенный вариант известной математической теоремы, что, впрочем, не упраздняет ее истинности. Продолжая аналогию со строительством, можно сказать, что здание при этом остается столь же крепким; производится всего лишь небольшое расширение или перепланировка, не затрагивающая фундамента. Иногда косметического ремонта оказывается недостаточно, и тогда приходится даже разрушать «интерьер» здания и создавать новый. Несмотря на то что старые теоремы все так же справедливы, порой возникает потребность в новых разработках или свежем наборе данных, чтобы создать более полную картину.
Наиболее важные теоремы обычно проверяют и перепроверяют много раз и многими способами, не оставляя ни единого шанса на ошибку. Разумеется, доказательства менее очевидных теорем, которые не подверглись столь тщательной проверке, могут содержать ошибки. Если ошибка обнаружена, комнату в здании или даже целое крыло приходится разрушать и выстраивать заново. И все же остальное здание — прочное сооружение, прошедшее проверку временем, — остается нетронутым.
Одним из величайших архитекторов геометрии стал Пифагор, которому приписывают открытие формулы, представляющей собой одно из самых прочных сооружений из когда-либо возведенных в математике. Теорема Пифагора (именно такое название она носит) утверждает, что в прямоугольном треугольнике, то есть в треугольнике, один из углов которого равен 90°, квадрат длины наибольшей из сторон (гипотенузы) равен сумме квадратов двух более коротких (катетов). Бывшие и нынешние школьники легко вспомнят соответствующую формулу: a>2 + b>2 = c>2. Это весьма простое, но невероятно мощное утверждение столь же важно сегодня, как и 2500 лет назад, когда оно было сформулировано. Применение данной теоремы не ограничивается школьной математикой. Эта теорема настолько важна и всеобъемлюща, что я, например, использую ее почти каждый день, практически не замечая этого.
На мой взгляд, теорема Пифагора — важнейшее утверждение в геометрии, одинаково важное как для современной математики высоких размерностей, например для нахождения расстояний в пространствах Калаби-Яу и решения эйнштейновских уравнений движения, так и для расчетов на двухмерной плоскости, такой как лист бумаги с домашним заданием, или в трехмерной классной комнате начальной школы. Значимость этой теоремы обусловлена тем, что ее можно использовать для расчета расстояний между двумя точками в пространстве любой размерности. Как я уже сказал в начале этой главы, геометрия постоянно использует понятие расстояния, по причине чего эта формула является основой практически всех расчетов.
Более того, я нахожу эту теорему также чрезвычайно красивой, хотя о вкусах, как известно, не спорят. Нам, как правило, нравятся те вещи, которые хорошо нам знакомы, — вещи, которые стали для нас настолько привычными, настолько естественными, что мы считаем их само собой разумеющимися, подобно восходу и заходу солнца. Кроме того, теорема Пифагора очень лаконична — три простые переменные, возведенные во вторую степень,
Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.
Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.
Исторический триллер.Россия в 9 веке разбита на мелкие княжества, которые враждуют между собой.Князю Гостомыслу предсказывают, что он пригласит править к себе в Новгород — врага своего. Кто он? Сбудутся ли предсказания?А пока русскую землю раздирают на части, то норманны, то варяги. Пришло время выбрать одного правителя на Руси. Местный князь Вадим и его жена (колдунья) — тоже имеют амбициозные планы. И они хотят силой завоевать все славянские княжества. Приходится Гостомыслу просить помощи у своего внука — финского принца Рюрика.
Исторический триллер.Сейчас уже мало кто верит в колдовство и сверхъестественные силы. И уж, конечно, мало найдётся людей, которые знают, что такое честь и рыцарское достоинство. А в девятом веке новой эры эти понятия были, почти обыденными.В этой книге рассказывается о том, как в седой древности русские князья Игорь и Олег создавали новое государство Киевскую Русь. Преодолев огонь сражений, колдовские силы и коварство врагов, они добились своего, и заветная мечта отца князя Игоря Рюрика воплотилась в жизнь.