Теория физического вакуума в популярном изложении - [11]

Шрифт
Интервал

, движется по круговой орбите, т.е. ускоренно.

Перед этим мы рассматривали ускоренные локально инерциальные системы отсчета первого рода, в которых локально на тело отсчета действует внешняя сила, скомпенсированная силой инерции (см. рис. 4). Было показано, что в этом случае тело отсчета хотя и движется ускоренно, но движется по инерции согласно уравнениям геодезических риманова пространства. Свободное вращательное движение диска демонстрирует нам другой пример ускоренного движения по инерции. Однако в этом случае мы имеем другой класс ускоренных систем отсчета, а именно - ускоренные локально инерциальные системы отсчета второго рода.

Такие системы образуются тогда, когда на центр масс тела отсчета действуют скомпенсированные силы инерции.

На рис. 11 представлен пример ускоренной локально инерциальной системы отсчета второго рода. Единичные вектора е>1, е>2, е>3 системы В жестко связаны с вращающимся диском. В системе В на центр масс диска действуют скомпенсированные центробежные силы инерции симметрично по всем направлениям в плоскости диска. В результате центр масс диска покоится или движется равномерно и прямолинейно (но уже с вращением) относительно другой такой же системы А(см. рис.11).

Предположим теперь, что система А не вращается, а движется прямолинейно и равномерно, т.е. является инерциальной. Наблюдатель в системе А видит, что диск вращается относительно его системы отсчета с угловой скоростью w. Он также видит, что начало О системы отсчета В (только одна точка) покоится или движется относительно его прямолинейно и равномерно, хотя система отсчета В является ускоренной! Кроме того, наблюдатель А видит, что вращающийся диск подвержен действию сил инерции, которые действуют на каждый малый элемент диска. Если бы диск был абсолютно твердым телом (расстояние между точками такого тела не меняется, какие бы силы на него не действовали), то его форма осталась бы неизменной. Однако при вращении реального диска его форма меняется из-за действия сил инерции (см. рис. 12).



>Рис. 12. На резиновом диске нанесена сетка: а) - диск не вращается; б) - диск вращается с некоторой угловой скоростью w. В результате вращения увеличивается (d < D) диаметр резинового диска и его внутренняя геометрия изменяется.


Поскольку силы инерции действуют на все точки вращающегося диска, то имеет смысл говорить о поле сил инерции. В свою очередь, силы инерции порождаются торсионным полем, которое возникает тогда, когда происходит вращение каких-либо объектов. Слово торсионное происходит от английского слова torsion, что означает кручение. Впервые в науке кручение было связано с вращением французским математиком Ж. Френе, который связал угловую скорость вращения w с кручением c по формуле:


w = cv ,


где v - линейная скорость. При вращении диска в каждой его точке образуется поле кручения c , которое вызывает поле сил инерции. Когда угловая скорость вращения диска w постоянна (w = const), кручение принимает вид:


c = 1/r ,


где r - расстояние от оси вращения до некоторой точки на диске. В результате из формулы Френе мы получаем известную в механике формулу вращательного движения:


c = v/r


На рис. 12 изображен вращающийся резиновый диск, который деформируется и изменяет свою внутреннюю геометрию из-за появления на вращающемся диске торсионного поля (поля кручения). Остается только установить геометрию пространства событий и соответствующие уравнения геодезических, которые описывают движение ускоренных локально инерциальных систем отсчета второго рода.

Проведенные исследования показали, что внутренняя геометрия диска с кручением c соответствует геометрии немецкого математика Р. Вайценбека. В отличии от геометрии Римана, геометрия Вайценбека обладает не только кривизной пространства но и его кручением.

Из формулы w = cv видно, что кручение обращается в нуль, когда равна нулю угловая скорость вращения w. Если использовать преобразования трансляционных координат х, у и z, то обратить угловую скорость вращения в ноль невозможно. Для этого необходимо использовать преобразования неголономных угловых координат ф>1, ф>2, ф>3. С помощью этих преобразований можно перейти в систему отсчета, которая вращается в ту же сторону и с такой же угловой скоростью как и система В, и начало которой совпадает с началом системы В. В этой системе w=0 и, следовательно, угловая скорость оказывается величиной относительной. Заметим, что при этом координатное пространство событий должно быть по крайней мере шестимерным.

1.11. Относительность сил и полей инерции.

Со времен Ньютона физиков озадачивали самые загадочные силы природы - силы инерции, которые проявляют себя в ускоренных системах отсчета. Более чем триста лет назад И. Ньютон поставил перед учеными вопрос, почему поверхность воды в ведре искривляется, если, взявшись за ручку, начать вращать ведро над головой. Причиной этого искривления является центробежная сила инерции


F>i = - mrw>2 ,


действующая на массу воды в ведре. В этой формуле m - масса воды, w - угловая скорость вращения ведра, r - радиус вращения. Эта же сила действует во вращающемся барабане стиральной машины на капельки воды в мокром белье, обеспечивая быстрое отжимание белья при вращении барабана.


Рекомендуем почитать
Геометрия, динамика, вселенная

Книга посвящена проблемам современной физики и космологии. Рассматривается современная геометрия и ее связь с динамикой, новейшие модели эволюции Метагалактики, обсуждается проблема структуры физического пространства и его размерность. Все эти проблемы теоретической физики и космологии автор излагает для читателей, знакомых с общей физикой в объеме курсов, читаемых в вузах. Книга рассчитана на читателей, интересующихся современными достижениями космологии и физики.


Физика и жизнь. Законы природы: от кухни до космоса

Прочитав эту книгу, вы не только пополните свои знания в области физики, но и, возможно, измените отношение к этому предмету, если раньше не очень-то его жаловали. Порой вы даже будете раздосадованы тем, что раньше этого не замечали и не применяли. А удивляться есть чему, поскольку физика буквально пронизывает нашу жизнь; она поистине вездесуща и объясняет многие явления и процессы, от приготовления пиццы, тостов и попкорна, до образования жемчужин, вращения Земли и строительства кораблей для плавания во льдах.


50 лет советской физики

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Атомная энергия для военных целей

Официальный отчёт о разработке атомной бомбы под наблюдением правительства США.The Official Report on the Development of the Atomic Bomb Under the Auspices of the United States Government.


Радиация. Дозы, эффекты, риск

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Нейтрино - призрачная частица атома

В книге известного популяризатора науки А. Азимова в живой и популярной форме изложены современные представления о самой неуловимой частице микромира — нейтрино. Азимов прослеживает цепь событий, приведших физиков к открытию нейтрино, рассказывает о том, как эту частицу научились регистрировать, о ее роли в эволюции Вселенной, о последних достижениях нейтринной физики — двухнейтринном эксперименте. Автор стремится раскрыть перед читателем современную физическую картину мира, но в то же время не подавить его массой сведений, столь обширных в этой области науки.Книгой заинтересуются самые широкие круги читателей: школьники, преподаватели и те, кто следит за новейшими достижениями физики.