Теорема века. Мир с точки зрения математики - [11]
Тогда у С найдутся два элемента A и В, которые необходимо будет считать принадлежащими двум различным непрерывностям; мы узнаем это потому, что нельзя будет найти в С линейный ряд последовательных элементов (каждый из этих элементов не может отличаться от предыдущего; за первый возьмем A, а за последний В), если хоть один из элементов этого ряда не будет неотличим от одного из элементов купюры.
Может, напротив, случиться, что реализация купюры будет недостаточна для подразделения непрерывности С. В целях классификации физических непрерывностей мы должны исследовать, каковы должны быть купюры, которые необходимы для подразделения непрерывности.
Если физическую непрерывность С можно подразделить, реализуя купюру, состоящую из конечного числа различимых один от другого элементов (и не образующую ни одной непрерывности, ни нескольких непрерывностей), то мы скажем, что С есть непрерывность одного измерения.
Если, напротив, можно подразделить С только при помощи купюр, которые сами представляют собой непрерывности, то мы скажем, что С – непрерывность нескольких измерений. Если это достигается купюрами, которые являются непрерывностями одного измерения, то мы скажем, что С имеет два измерения; если достаточно купюр, имеющих два измерения, то мы скажем, что С имеет три измерения, и т. д.
Таким образом, понятие физической непрерывности многих измерений оказывается определенным благодаря тому весьма простому факту, что две группы ощущений могут быть различимыми или же неразличимыми.
Математическая непрерывность нескольких измерений. Понятие математической непрерывности n измерений вытекает отсюда совершенно естественно при помощи процесса, вполне подобного тому, который мы изучили в начале этой главы. Точка подобной непрерывности, как известно, представляется нам определенной при помощи системы n различных величин, называемых ее координатами.
Не всегда необходимо, чтобы величины эти были измеримыми. В геометрии имеется целая отрасль, в которой отвлекаются от измерения этих величин; в ней занимаются, например, только изучением вопроса, лежит ли точка В на кривой АВС между точками A и С, и не стараются узнать, равна ли дуга АВ дуге ВС, или она в два раза больше ее. Это – так называемый Analysis Situs.
В этом вся сущность учения, привлекшего к себе внимание величайших геометров, учения, из которого вытекает ряд замечательных теорем. Эти теоремы отличаются от теорем обыкновенной геометрии тем, что они являются чисто качественными, и они остались бы справедливыми, если бы фигуры копировались искусным чертежником, который грубо нарушал бы их пропорции и заменял бы прямые линии более или менее искривленными.
Когда в только что определенную нами непрерывность пожелали ввести меру, эта непрерывность превратилась в пространство: родилась геометрия. Но я откладываю это исследование для второй части.
Часть II. Пространство
Глава III. Неевклидовы геометрические системы
Всякое заключение предполагает наличие посылок; посылки же эти или сами по себе очевидны и не нуждаются в доказательстве, или могут быть установлены, только опираясь на другие предположения. Но так как этот процесс не может продолжаться беспредельно, то всякая дедуктивная наука, и в частности геометрия, должна основываться на некотором числе недоказуемых аксиом. Поэтому все руководства по геометрии прежде всего излагают эти аксиомы. Но между этими аксиомами приходится делать различие; некоторые их них, как, например, аксиома: «две величины, равные одной и той же третьей, равны между собой», суть предложения не геометрии, а анализа. Я рассматриваю их как аналитические априорные суждения и не буду заниматься ими. Но я должен остановиться на других аксиомах, которые относятся к геометрии. Большинство руководств излагают три такие аксиомы:
1. Между двумя точками можно провести лишь одну прямую.
2. Прямая есть кратчайшее расстояние между двумя точками.
3. Через данную точку можно провести лишь одну прямую, параллельную данной.
Хотя вообще и обходятся без доказательства второй из этих аксиом, но было бы возможно вывести ее из двух остальных и из тех гораздо более многочисленных аксиом, которые допускаются скрыто, как я выясню это далее.
Долгое время тщательно искали доказательства третьей аксиомы, известной под названием постулата Евклида. Сколько было потрачено сил в этой химерической надежде, положительно не поддается описанию. Наконец, в начале прошлого столетия и почти одновременно двое ученых, русский – Лобачевский и венгерский – Бояи, установили неопровержимо, что это доказательство невозможно; этим они почти совсем избавили нас от изобретателей геометрии без постулата Евклида; с тех пор парижская Академия наук получает не более одного-двух новых доказательств в год. Но вопрос не был исчерпан; его разработка не замедлила сделать новый большой шаг с опубликованием знаменитого мемуара Римана «Ober die Нуроthesen, welche der Geometrie zum Grunde liegen»[4]. Эта маленькая работа вызвала к жизни большинство новых работ, о которых я буду говорить дальше и среди которых следует назвать работы Бельтрами и Гельмгольца.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.