Тени разума. В поисках науки о сознании - [234]
Рис. 8.1. Кажется, что каждый из трех миров — платоновский математический, физический и ментальный — неким таинственным образом «произрастает» из какой-то малой части своего предшественника (или, по крайней мере, очень тесно с этим предшественником связан).
Сам Платон большое внимание уделял первой из этих стрелок (а также, на свой лад, третьей), и неустанно подчеркивал различие между совершенной математической формой и ее несовершенной «тенью» в физическом мире. Так, сумма углов математического треугольника (евклидова треугольника, обязательно уточним мы сегодня) составляет ровно два прямых угла, тогда как углы физического треугольника, сделанного, скажем, из дерева со всей точностью, на которую мы способны, образуют в сумме угол, величина которого очень близка к требуемой, но все же не равна ей. Эти свои соображения Платон изложил в виде притчи. Он вообразил нескольких граждан, заточенных в пещере и прикованных таким образом, чтобы они не могли видеть находившихся за их спинами совершенных форм, отбрасывающих в свете костра тени на стену пещеры, доступную взорам прикованных граждан. Таким образом, люди непосредственно видели лишь несовершенные тени тех форм, к тому же искаженные неровным светом костра. Совершенные формы символизировали собой математические идеи, а тени на стене — мир «физической реальности».
Со времен Платона основополагающая роль математики в объяснении воспринимаемой структуры и действительного поведения физического мира возросла чрезвычайно. В 1960 году видный физик Юджин Вигнер прочел знаменитую лекцию под названием «Непостижимая эффективность математики в физических науках». В ней он отметил поразительную точность и хитроумную применимость замысловатых математических конструкций, которые физики регулярно и во все больших количествах обнаруживают в своих описаниях реальности.
Для меня наиболее впечатляющим примером эффективности математики является общая теория относительности Эйнштейна. Нередко можно услышать, что физики всего лишь подмечают время от времени, где именно на этот раз математические концепции оказались хорошо применимыми к физическому поведению. Утверждают, соответственно, что физики, как правило, направляют свои интересы в сторону тех областей, где имеющиеся математические описания работают; таким образом, нет ничего удивительного в том, что математические и физические описания так хорошо друг с другом уживаются. Мне, впрочем, представляется, что авторы подобных заявлений, что называется, попадают пальцем в небо. Они просто никак не объясняют то фундаментальное единство, которое, как показывает, в частности, теория Эйнштейна, существует между математикой и устройством мироздания. Когда Эйнштейн разрабатывал свою теорию, никакой действительной необходимости в ней, с экспериментальной точки зрения, не было. Ньютоновская теория тяготения держалась уже почти 250 лет и достигла за это время потрясающей точности (погрешность порядка одной десятимиллионной — одно это является достаточно убедительным доказательством глубинной математической основы физической реальности). Да, в движении планеты Меркурий была замечена аномалия, однако это, разумеется, не послужило поводом для отказа от схемы Ньютона. И все же Эйнштейн счел, что можно добиться лучшего результата, если изменить саму основу теории тяготения. В первые годы после того, как Эйнштейн обнародовал теорию относительности, в поддержку ее можно было привести лишь несколько наблюдаемых эффектов, а преимущество над теорией Ньютона в точности было крайне незначительным. Теперь же, по прошествии 80 лет, общая точность теории относительности возросла в миллионы раз. Эйнштейн не просто «подметил» повторяющиеся особенности поведения физических объектов. Он обнаружил фундаментальную математическую субструктуру, реально существующую и до тех пор скрытую в глубинах мироздания. Более того, он искал вовсе не какие-то физические феномены, которые могли бы подойти под красивую теорию. Он искал и нашел точное математическое соотношение, заложенное в самой структуре пространства и времени, — наиболее фундаментальное из всех физических понятий.
В основе всех других успешных теорий элементарных физических процессов всегда лежит некая математическая структура, которая оказывается не только чрезвычайно точной, но и весьма хитроумной математически. (А чтобы читатель не подумал, что «ниспровержение» прежних физических представлений — например, теории Ньютона — каким-то образом эти представления обесценивает и лишает смысла, спешу уверить, что это ни в коем случае не так. Если прежние идеи были достаточно обоснованны — что можно сказать, например, о теориях Галилея или того же Ньютона, — то они и дальше остаются в добром здравии и находят в новой схеме свое место.) Кроме того, и сама математика, в своем стремлении как можно точнее описать поведение природных объектов, находит для себя немало полезного, порой неочевидного и неожиданного. И квантовая теория (тесные взаимоотношения которой с математикой — через посредство комплексных чисел — очевидны, надеюсь, даже из того краткого обзора предмета, что попал на эти страницы), и общая теория относительности, и электромагнитные уравнения Максвелла — все они дали весьма ощутимый толчок развитию математики. Причем это верно не только для относительно новых теорий, что я перечислил. Не менее верно это и для теорий, куда более отдаленных от нас во времени, — например, для ньютоновской механики (давшей нам математический анализ) или древнегреческого анализа структуры пространства (которому мы обязаны самим понятием геометрии). Необычайная точность математики в описании физического поведения (например, точность квантовой электродинамики, достигающая одиннадцатого или даже двенадцатого знака после запятой) не раз удивляла ученых. Однако на этом загадки не заканчиваются. Концепции, скрывающиеся в физических процессах, обладают чрезвычайной глубиной, тонкостью и
Книга написана известным английским ученым-астрофизиком и популяризатором науки Роджером Пенроузом на основе престижных Теннеровских лекций (прочитанных им в 1995 г.) и материалов вызванной этими лекциями полемики. Поэтому она включает в себя разделы, написанные крупными английскими учеными Нэнси Картрайт и Абнером Шимони, а также знаменитым физиком -теоретиком Стивеном Хокингом. Книгу отличают оригинальность идей автора, разнообразие обсуждаемых проблем (парадоксы квантовой механики, астрофизика, теория познания, проблемы художественного восприятия) и исключительно высокий научный и философский уровень изложения.
Монография известного физика и математика Роджера Пенроуза посвящена изучению проблемы искусственного интеллекта на основе всестороннего анализа достижений современных наук. Возможно ли моделирование разума? Чтобы найти ответ на этот вопрос, Пенроуз обсуждает широчайший круг явлений: алгоритмизацию математического мышления, машины Тьюринга, теорию сложности, теорему Геделя, телепортацию материи, парадоксы квантовой физики, энтропию, рождение Вселенной, черные дыры, строение мозга и многое другое.Книга вызовет несомненный интерес как у специалистов гуманитарных и естественнонаучных дисциплин, так и у широкого круга читателей.[1].
А. Ф. Лосев "Античный космос и современная наука"Исходник электронной версии:А.Ф.Лосев - [Соч. в 9-и томах, т.1] Бытие - Имя - Космос. Издательство «Мысль». Москва 1993 (сохранено только предисловие, работа "Античный космос и современная наука", примечания и комментарии, связанные с предисловием и означенной работой). [Изображение, использованное в обложке и как иллюстрация в начале текста "Античного космоса..." не имеет отношения к изданию 1993 г. Как очевидно из самого изображения это фотография первого издания книги с дарственной надписью Лосева Шпету].
К 200-летию «Науки логики» Г.В.Ф. Гегеля (1812 – 2012)Первый перевод «Науки логики» на русский язык выполнил Николай Григорьевич Дебольский (1842 – 1918). Этот перевод издавался дважды:1916 г.: Петроград, Типография М.М. Стасюлевича (в 3-х томах – по числу книг в произведении);1929 г.: Москва, Издание профкома слушателей института красной профессуры, Перепечатано на правах рукописи (в 2-х томах – по числу частей в произведении).Издание 1929 г. в новой орфографии полностью воспроизводит текст издания 1916 г., включая разбивку текста на страницы и их нумерацию (поэтому в первом томе второго издания имеется двойная пагинация – своя на каждую книгу)
В настоящее время Мишель Фуко является одним из наиболее цитируемых авторов в области современной философии и теории культуры. В 90-е годы в России были опубликованы практически все основные произведения этого автора. Однако отечественному читателю остается практически неизвестной деятельность Фуко-политика, нашедшая свое отражение в многочисленных статьях и интервью.Среди тем, затронутых Фуко: проблема связи между знанием и властью, изменение механизмов функционирования власти в современных обществах, роль и статус интеллектуала, судьба основных политических идеологий XX столетия.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Автор книги — немецкий врач — обращается к личности Парацельса, врача, философа, алхимика, мистика. В эпоху Реформации, когда религия, литература, наука оказались скованными цепями догматизма, ханжества и лицемерия, Парацельс совершил революцию в духовной жизни западной цивилизации.Он не просто будоражил общество, выводил его из средневековой спячки своими речами, своим учением, всем своим образом жизни. Весьма велико и его литературное наследие. Философия, медицина, пневматология (учение о духах), космология, антропология, алхимия, астрология, магия — вот далеко не полный перечень тем его трудов.Автор много цитирует самого Парацельса, и оттого голос этого удивительного человека как бы звучит со страниц книги, придает ей жизненность и подлинность.