Суперсила - [16]

Шрифт
Интервал

Замедление времени

Новая физика разрушила не только геометрическую интуицию, но столь же безжалостно расправилась с привычным представлением о времени. Здравый смысл приучил нас мыслить в понятиях Времени, рассматриваемого как нечто универсальное и абсолютное, относительно чего мы отмериваем все события. Мы не делаем различия между своим и чужим временем – существует лишь единое время. Теория относительности отвергает столь упрощенный подход. Время, подобно пространству, также способно растягиваться или сжиматься в зависимости от движения наблюдателя. Два события могут считаться, с точки зрения одного наблюдателя, разделенными промежутком времени в один час, с точки зрения другого – одной минутой.

Это не просто психологический эффект. Время действительно можно затянуть, или замедлить, даже в лаборатории, и зарегистрировать этот эффект можно с помощью точных часов. Чтобы заметить замедление времени, часы должны двигаться со скоростью, близкой к скорости света. Свет распространяется в пространстве со скоростью около 300 тыс. км/с, что намного превосходит скорость самого быстродвижущегося современного космического аппарата. Тем не менее точность хода современных атомных часов позволяет различить малейшее замедление времени даже на борту реактивного авиалайнера.

Вполне заметное замедление времени можно наблюдать, воспользовавшись субатомными частицами: они настолько бестелесны, что их можно разогнать почти до скорости света. Например, в эксперименте, проведенном в Европейском центре ядерных исследований (ЦЕРН), частицы, называемые мюонами, удалось разогнать до скорости, столь близкой к скорости света, что их масштаб времени растянулся в 24 раза. Мюоны удобны для таких исследований, поскольку они нестабильны и через малую долю секунды распадаются на электроны и другие частицы. Это превращение характеризуется определенным периодом полураспада, т.е. мюоны как бы наделены внутренними часами. В собственной (связанной с ними самими) системе отсчета распад мюонов происходит в среднем примерно через две миллионные доли секунды, но в лабораторной системе отсчета время жизни мюонов существенно возрастает.

Замедление времени в движущейся системе отсчета особенно раздражает непосвященных, видимо, задевая их глубже, чем другие странности современной физики. Примерно половина статей, поступающих в физические журналы от таких адресатов, касается проблемы времени и относительности, и авторы упорно ищут изъяны в рассуждениях Эйнштейна или противоречия в теории относительности. Они не приемлют мысль о том, что время, “упруго” и его ход может меняться в зависимости от наблюдателя. С особыми ухищрениями они пытаются опровергнуть знаменитый “парадокс близнецов”. Он состоит в следующем: если один из двух близнецов отправляется на ракете в космическое путешествие, то по возвращении он обнаруживает, что его брат оказался старше его, скажем, на десять лет. Явление, которое физики склонны рассматривать как курьез, вызывает у дилетантов абсолютное неприятие. Отчасти это объясняется тем, что у каждого вырабатывается собственное представление о времени и люди воспринимают манипуляции со временем как посягательство на нечто глубоко личное. Но нравится это или нет, замедление времени вполне реально.

Одно из самых сильных замедлений времени, которое удалось создать человеку, происходит на установке в Дарсбери (графство Чешир, Великобритания). Называется эта установка электронный синхротрон и предназначена для ускорения пучка электронов, который проходит по кольцу диаметром 30м три миллиона раз в секунду. Большие магниты отклоняют электроны от естественного движения по прямой, и каждый оборот по кольцу сопровождается испусканием электромагнитного излучения, называемого синхротронным. Электроны движутся со скоростью лишь на одну десятитысячную процента меньше скорости света; при этом масштаб времени растягивается по сравнению с нашим примерно в десять тысяч раз. Именно это расхождение масштабов времени используют инженеры, для этого главным образом и был построен ускоритель. Хотя частота испускаемого излучения в собственной системе отсчета электронов составляет всего лишь несколько килогерц (т.е. лежит в диапазоне радиочастот), в лабораторной системе отсчета вследствие замедления времени частота увеличивается в тысячи раз. Поэтому испускаемое электронами излучение мы воспринимаем как ультрафиолетовое или рентгеновское. Таким образом, с помощью синхротрона эффект замедления времени используется для генерации интенсивного коротковолнового излучения в широком диапазоне частот. Такие установки немногочисленны и находят ряд практических применений. Итак, в Дарсбери таинственное явление замедления времени приобретает сугубо практическое значение.

Замедление времени выступает рука об руку с сокращением длины (теория относительности заставляет нас связывать пространство и время в единое пространство-время), и по мере приближения к предельной скорости – скорости света – оба эффекта беспредельно возрастают. Именно поэтому невозможно преодолеть световой барьер и двигаться со сверхсветовой скоростью, ибо для этого понадобилось бы вывернуть пространство-время “наизнанку” и превратить пространство во время, а время – в пространство, что дало бы возможность телам совершать путешествия в прошлое. Поэтому скорость света является предельной скоростью, с которой могут двигаться во Вселенной тела или распространяться сигналы.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.