Строение и законы Вселенной - [75]
В обеих задачах ставится очень важный практический вопрос о возможности описаний и вычисления многомерной поверхности, что необходимо для расчетов пространственных взаимодействий, например, химических реакций, тепло- и массопереноса и т. д. Здесь ответ на вопрос определяется рациональным выбором системы координат. Обычно используются прямоугольные системы, а полярные существенно упрощаются, что делает неизбежными ошибки даже при наиболее простых работах на поверхности геоида (Земли). Применение же более сложных систем неевклидовой геометрии, четырехмерных и более пространств либо сопровождается значительным увеличением объемов расчетов, либо ведет к многозначности ответа, либо происходит и то и другое вместе.
Предложения о сведении любой структуры к набору достаточно простых (в смысле математического описания) геометрических фигур являются перспективными. Но! По формальным признакам, что осложняет перенос решений в ЭВМ, возникают особые точки>; где решения неоднозначны.
Предложенная задача Ходжи и является одной из попыток как-то скорректировать неоднозначность решения. При ее решении представляется наиболее разумным применить аналого-цифровой подход.
Известная нам Вселенная в своей основе состоит из полевых структур, в частности атомных и субатомных, образующих и так называемую материю-субстрат с более или менее определенными границами. Каждая частица имеет границу объема, далее которой она перестает быть сама собой. Определение этой границы является аналоговой операцией, констатирующей, где происходит переход количества в качество. Далее происходит просто цифровой счет. Это и есть наиболее общее решение задачи. Автор считает, что, скоординировав работу известных ему специалистов и финансируя эту работу так, как она того заслуживает, и посвятив ей лет 5–6, он мог бы получить как одно из решений этой задачи, так и несколько сопутствующих решений задач, здесь не приведенных по определению эталонных значений и систем координат, но предпочитает оставить эту рутинную (в хорошем смысле слова) работу коллективам математиков и физиков. К тому же примерная стоимость экспериментов и расчетов на 2 порядка превысит размер объявленной премии.
Здесь важно определить уровень размерности, где указанный цифровой счет производится. Например там, где присутствует гладкая с точки зрения технических целей поверхность, при приближении измерительного эталона к размеру атомных частиц поверхность становится достаточно сложной и не совсем ровной. Значит, здесь следует решить более общую задачу, такую как выбор или создание системы координат, назначение эталона единицы величины и «сшивание» решений в особых точках.
Задачи типа определения, где какая поверхность у кольца Мебиуса, или геометрической фантазии Эшера очень интересны, познавательны и стимулируют воображение на создание оригинальных идей и решений. Однако здесь допускается одна маленькая хитрость — не указывается, в какой системе координат все это существует, так как в этом случае вся таинственность пропадает.
Если мы, например, рассмотрим кольцо Мёбиуса во внешней трехмерной координатной системе с фиксированным положением нуля отсчета и «+» или «-», то внешним или внутренним будет проекция поверхности на соответствующую плоскость. И всё! Это дает абсолютно однозначное решение. Если положение кольца изменилось, соответственно изменятся и положения проекций. Если система координат связана с поверхностью кольца, то там вообще сложная, но двухмерная задачка. Все зависит от формы и полноты задания граничных условий и даже от более точного определения, что считать наружной, а что — внутренней стороной.
Гипотеза Пуанкаре о соразмерности топологически разных объектов также является очень важной практической задачей реальной человеческой деятельности. Например, как из материала поверхности шара скроить тороид, при этом выполнив какой-то критерий вроде одного разреза или равенства площадей поверхностей. Однако перевод решения в N-мерное (более трех) пространство делает эту задачу более подходящей для развития математической логики, а не для решения практических задач, реализация которых все равно происходит в трехмерном мире.
В следующей задаче производится попытка связать законы микро- и макромиров на основе системы непротиворечивых уравнений.
Уравнение Навье — Стокса
Сразу отметим, что в поставленной коллективом ученых из Clay Mathematics Institute задаче отсутствует математическая запись уравнения, которое должно быть уточнено или расширено (этим, кстати говоря, грешат многие заказчики научных и технологических решений, не затрудняющие себя определением граничных условий задачи, тем самым-как бы «размывая» цель исследования и затрудняя поиск приемлемого ответа). Э го также дает возможность недобросовестному заказчику отказать в выдаче обещанного вознаграждения.
В каноническом виде уравнение Навье — Стокса определяет движение несжимаемой вязкой жидкости и записывается в виде
где v — вектор скорости; t— время; F — вектор напряженности массовых сил; ρ — плотность среды; Р — гидродинамическое давление; n — кинематическая вязкость.
Их служба и опасна, и трудна, и на первый взгляд как будто не видна. На второй – она подавно не видна... Служба, блин, такая...Питерские менты продолжают запойно работать, и в этом им помогает Дмитрий Черкасов, в то время как Рогов, Петренко и Плахов занимаются неизвестно чем, непонятно где...
Пацанам России — конкретно красе и чисто гордости нации — посвящается эта книга. События и персонажи в большинстве своем вымышлены. Хотя и не всегда...
Немного дикие, но тем не менее более симпатичные, чем раньше, правильные пацаны Ортопед, Глюк, Горыныч, Садист, Кабаныч, Стоматолог, Гугуцэ и остальные члены бодрого коллектива, а также их большой друг Денис Рыбаков снова в бою.Покой им только снится.Как, впрочем, и окружающим их официальным и неофициальным лицам...
Книга, которую вы держите в руках, – это долгожданная встреча с популярными героями романов известного писателя Дмитрия Черкасова «Шансон для братвы» и «Канкан для братвы». Невероятные в умопомрачительно смешные истории из жизни реальных братков России продолжаются...
Новый остросюжетный триллер Дмитрия Черкасова приоткрывает завесу тайны над кровавыми интригами и заговорами чиновников Высшего аппарата власти. Секретные лаборатории, занимающиеся экспериментами над живыми людьми; этническое, психотронное и биологическое оружие; убийства, шантаж и погони; любовь молодого офицера госбезопасности и женщины-врача, оказавшихся втянутыми в преступные игры, но не желающих становиться пешками в руках политиков, — все это не сможет оставить вас равнодушными. Любые совпадения имен, фамилий и должностей персонажей с реальными людьми являются абсолютно случайными и совершенно непреднамеренными, чего нельзя сказать о некоторых происходящих в книге событиях.
В отчаянной попытке заполучить мощное биологическое оружие сошлись спецслужбы России и Запада. Ампула со смертоносным вирусом с эсминца «Хюгенау», потопленного во время войны в водах Ладоги, теперь находится в Париже. Но десант подводного спецназа уже готов к высадке! И теперь Посейдон, он же капитан подводного спецназа Каретников, и его «Сирены» примут бой в мутных водах Сены...
Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.
Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.