Стратегические игры - [14]

Шрифт
Интервал

, посвященной дилемме заключенных.

В более общем смысле игра может быть с нулевой сумой в краткосрочном периоде, но при этом иметь взаимовыгодные сферы сотрудничества в долгосрочном периоде. Например, каждая футбольная команда предпочитает выигрывать, но все команды понимают, что упорная борьба между ними вызывает больший зрительский интерес, что приносит обеим командам пользу в долгосрочной перспективе. Именно поэтому команды договариваются о такой схеме привлечения игроков, в соответствии с которой они должны выбирать игроков в порядке, обратном их текущим позициям, тем самым нивелируя неравенство талантов. В забегах или заездах на длинные дистанции бегуны или велосипедисты часто прибегают к сотрудничеству: два или более спортсменов могут помогать друг другу, по очереди передвигаясь в слипстриме[13]. Однако в конце гонки сотрудничество прекращается и все участники делают стремительный рывок к финишной черте.

Вот полезное эмпирическое правило для ваших собственных стратегических действий в жизни. В игре, где присутствует определенная доля конфликта и сотрудничества, вы часто будете разрабатывать отличные стратегии того, как сорвать крупный куш и стереть соперника в порошок, но при этом вас неизменно будет преследовать ощущение, что вы ведете себя как худший образец яппи[14] 1980-х. В такой ситуации велика вероятность того, что в игре есть повторяющийся или постоянный аспект, который вы упустили из виду. Ваша агрессивная стратегия может обеспечить вам краткосрочное преимущество, но ее долгосрочные побочные эффекты обойдутся вам гораздо дороже. Следовательно, вам необходимо копнуть глубже и найти элемент сотрудничества, а затем внести соответствующие коррективы в стратегию. Вы будете удивлены, как часто вежливость, порядочность и золотое правило поступать с людьми так, как вы хотели бы, чтобы поступали с вами, оказываются не просто старинными проверенными средствами от всех бед, а и эффективными стратегиями во всем комплексе игр, в которые вы будете играть на протяжении жизни.

Г. Располагают ли игроки полной или равноценной информацией?

В шахматах каждый игрок точно знает текущую ситуацию и все ходы, которые к ней привели, а также тот факт, что соперник тоже ставит перед собой цель выиграть. Эта ситуация исключительная: участники большинства других игр сталкиваются с определенными ограничениями информации, которые бывают двух видов. Во-первых, игрок может не знать всей информации, имеющей отношение к выбору, который ему предстоит делать в каждый момент игры. Такая информационная проблема возникает по причине неопределенности игрока относительно соответствующих переменных, которые носят как внутренний, так и внешний характер по отношению к самой игре. Например, игрок может не знать наверняка, какими будут внешние обстоятельства, такие как погода во время выходных или качество продукта, который он хочет купить; мы называем эту ситуацию внешней неопределенностью. Или игрок может сомневаться насчет того, какие именно ходы сделал его соперник в прошлом или делает одновременно с его собственными ходами; мы называем это стратегической неопределенностью. Если в игре нет ни внешней, ни стратегической неопределенности, мы говорим, что это игра с совершенной информацией; в противном случае — игра с несовершенной информацией[15]. Более точное формальное определение совершенной информации мы дадим в разделе 3.А главы 6 после введения концепции информационного множества. Теория игр с несовершенной информацией (неопределенностью) представлена в трех главах. В главе 4 мы поговорим об играх с одновременными действиями, которые влекут за собой стратегическую неопределенность, а в главе 8 и приложениях к ней проанализируем методы выбора в условиях неопределенности.

Более сложные стратегические ситуации складываются в случаях, когда одному игроку известно больше, чем другому, и называются играми с неполной или (что еще лучше) с асимметричной информацией. В подобных ситуациях попытки игрока логически вывести, скрыть, а иногда и сообщить личную информацию становятся важным элементом игры и стратегий. В бридже или покере игрок располагает частичной информацией о картах соперников. Их действия (заявка и розыгрыш в бридже, количество взятых карт и поведение игрока в покере) дают противнику определенные сведения. Каждый игрок пытается манипулировать своими действиями, чтобы ввести соперников в заблуждение (а в бридже — чтобы передать правдивую информацию партнеру), однако при этом должен учитывать, что оппонентам это известно и они используют свое стратегическое мышление для того, чтобы соответствующим образом интерпретировать его действия.

Возможно, вам кажется, что, владея исключительной информацией, вы всегда должны скрывать ее от соперников. Но это не так. Предположим, вы управляете фармацевтической компанией, которая параллельно с другими компаниями занимается разработкой нового лекарственного препарата. Если ваши ученые делают поистине революционное открытие, вы можете сообщить об этом конкурентам в расчете на то, что они прекратят разработки и вам не придется конкурировать с ними в будущем. Во время войны каждая из сторон хочет сохранить свою тактику и данные о расположении войск в тайне, однако в дипломатии, если у вас мирные намерения, вы отчаянно нуждаетесь в том, чтобы другие страны узнали и поверили в этот факт.


Еще от автора Авинаш Диксит
Теория игр. Искусство стратегического мышления в бизнесе и жизни

Теория игр – это строгое стратегическое мышление. Это искусство предугадывать следующий ход соперника вкупе со знанием того, что он занимается тем же самым. Основная часть теории противоречит обычной житейской мудрости и здравому смыслу, поэтому ее изучение может сформировать новый взгляд на устройство мира и взаимодействие людей. На примерах из кино, спорта, политики, истории авторы показывают, как почти все компании и люди вовлечены во взаимодействия, описываемые теорией игр. Знание этого предмета сделает вас более успешным в бизнесе и жизни.


Рекомендуем почитать
Таблица умножения. Как запомнить. Новый метод

Таблицу умножения перестроена, сделана новая картинка. Объём материала для запоминания сокращён примерно в 5 раз. Можно использовать самую сильную – зрительную память (в прежних картинках таблицы это невозможно). Ученики запоминали таблицу за один – полтора месяца. В ней всего 36 "домиков". Умножение и деление учаться одновременно. Книга обращена к детям, объяснение простое и понятное. Метод позволяет намного облегчить деление с остатком и сокращение дробей. Метод признан Министерством Просвещения России как полезная инновация (Муниципальное образование, инновации и эксперимент 2013/1)


Геометрическая рапсодия

Перед читателями проходит история возникновения и развития основных идей геометрии, которые и сегодня приводят к новым взглядам и открытиям в кристаллографии, химии, геологии, генетике, микробиологии, архитектуре, строительстве, технике. Плоское и объемное, свойства кристаллов и правильных тел, симметрия, замкнутость и бесконечность Вселенной — эти темы-мелодии сливаются в книге в некий гимн во славу Геометрии. Для иллюстрирования книги использованы гравюры голландского графика М. К. Эсхера, геометрические по своему содержанию. Научно-художественная книга для широкого круга читателей.


Приключения математика

Книга представляет собой автобиографию известного польского математика Станислава Улама. Широко известная на Западе, она так и не была переведена на русский язык. Книга написана в живом и ярком стиле, очень увлекательна, содержит много интересных исторических подробностей (из жизни С. Банаха, Дж. фон Неймана, Э. Ферми и др.). Для широкого круга читателей — от студентов до специалистов-математиков и историков науки. S. Ulam. Adventures of a Mathematician. Charles Scribner's Sons, New York, 1976.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Великая Теорема Ферма

История загадки, которая занимала лучшие умы мира на протяжении 358 лет.


Дискретная математика без формул

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.