Совместимость. Как контролировать искусственный интеллект - [106]

Шрифт
Интервал

. Однако, поскольку Вселенная проявляет определенную степень регулярности, крайне маловероятно, чтобы алгоритм выработал чрезвычайно плохую гипотезу, потому что такая гипотеза почти наверняка была бы отброшена одним из экспериментов.

Глубокое обучение — метод, вызывающий в СМИ всю эту шумиху по поводу ИИ, — является, главным образом, формой контролируемого обучения. Это одно из самых существенных достижений в сфере ИИ за последние десятилетия, поэтому полезно разобраться, как он работает. Более того, некоторые исследователи убеждены, что этот метод позволит создать ИИ-системы человеческого уровня в течение нескольких лет, так что стоит оценить, насколько это вероятно.

Проще всего понять глубокое обучение в контексте конкретной задачи, например обучения умению отличать жирафов от лам. Получив некоторое количество подписанных фотографий тех и других животных, обучающийся алгоритм должен сформировать гипотезу, позволяющую ему классифицировать неподписанные изображения. С точки зрения компьютера изображение есть не более чем большая таблица с числами, каждое из которых соответствует одному из трех RGB-значений одного пикселя изображения. Итак, вместо гипотезы го, которая принимает позицию на доске и ход как входной сигнал и решает, является ли ход допустимым, нам нужна гипотеза «жираф−лама», которая брала бы таблицу чисел в качестве входа и предсказывала категорию (жираф или лама).

Возникает вопрос: что это должна быть за гипотеза? За последние 50 с лишним лет исследования компьютерного зрения было опробовано много подходов. Сегодня фаворитом является глубокая сверточная нейронная сеть. Разберем по пунктам. Она называется сетью, потому что представляет собой комплексное математическое выражение, составленное упорядоченным образом из множества меньших выражений, причем композиционная структура имеет форму сети. (Такие сети часто называют нейронными, потому что их разработчики вдохновляются сетями нейронов головного мозга.) Она называется сверточной, потому что это хитрый математический способ сказать, что структура сети повторяется согласно определенной закономерности по всему входному изображению. Наконец, она называется глубокой, потому что обычно у такой сети много слоев, к тому же это звучит впечатляюще и чуточку зловеще.

Упрощенный пример (упрощенный, потому что реальные сети могут иметь сотни слоев и миллионы узлов) представлен на рис. 23. Сеть в действительности является изображением комплексного корректируемого математического выражения. Каждый узел сети соответствует простому корректируемому выражению, как показано на рисунке. Корректировки осуществляются путем изменения веса каждого входного сигнала, о чем свидетельствует выражение «регулятор уровня». Взвешенная сумма входных сигналов затем проходит контрольную функцию, после чего достигает выходной стороны узла. Обычно контрольная функция подавляет малые значения и пропускает большие.

Сеть обучается, просто «подкручивая все ручки регулировки громкости», уменьшая ошибку прогнозирования по подписанным примерам. Все очень просто: ни магии, ни особенно хитрых алгоритмов. Выяснение того, в какую сторону крутить ручки, чтобы уменьшить ошибку, — это самый обычный случай вычисления того, как изменение каждого веса изменит ошибку в выходном слое. Это ведет к простой формуле проведения ошибки обратным ходом от выходного слоя к входному с подкручиванием ручек по пути.



Удивительно, но процесс работает! В задаче распознавания объектов на фотографиях алгоритмы глубокого обучения продемонстрировали потрясающие результаты. Первый намек на них дал конкурс 2012 г. ImageNet, участникам которого предлагались обучающие данные, состоящие из 1,2 млн подписанных изображений из 1000 категорий, на основании которых алгоритм должен был подписать категории 100 000 новых изображений[363]. Джефф Хинтон, британский специалист по вычислительной психологии, стоявший у истоков первой революции нейронных сетей в 1980-х гг., экспериментировал с очень большой глубокой сверточной сетью: 650 000 узлов и 60 млн параметров. Со своей группой в Университете Торонто он добился на ImageNet уровня ошибок в 15 % — резкое улучшение по сравнению с предыдущим рекордом — 26 %[364]. К 2015 г. десятки команд использовали методы глубокого обучения, и уровень ошибок упал до 5 %, что сопоставимо с результатами человека, потратившего несколько недель на обучение распознаванию тысяч категорий этого теста[365]. К 2017 г. уровень ошибок у машин составил 2 %.

Примерно в тот же период были достигнуты сравнимые улучшения в распознавании речи и машинном переводе на основе аналогичных методов. В совокупности это три самые важные сферы применения ИИ. Глубокое обучение сыграло важную роль и в приложениях для обучения с подкреплением, например в изучении функции ценности, с помощью которой AlphaGo оценивает желательность возможных будущих позиций, а также в освоении регуляторов сложного роботизированного поведения.

В то же время мы очень слабо понимаем, почему глубокое обучение так хорошо работает. Пожалуй, лучшее объяснение заключается в глубине глубоких сетей: поскольку они имеют много слоев, каждый слой может изучить относительно простое преобразование входного сигнала в выходной, и множество этих простых преобразований в совокупности дает сложное преобразование, необходимое для перехода от фотографии к определению категории. Кроме того, глубокие сети для распознавания визуальных образов имеют встроенную структуру, усиливающую трансляционную и масштабную инвариантность. Это означает, что собака является собакой, независимо от того, в каком месте изображения находится и насколько большой выглядит на нем.


Рекомендуем почитать
Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Меч и Грааль

Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.


Популярно о микробиологии

В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.


Фактологичность

Специалист по проблемам мирового здравоохранения, основатель шведского отделения «Врачей без границ», создатель проекта Gapminder, Ханс Рослинг неоднократно входил в список 100 самых влиятельных людей мира. Его книга «Фактологичность» — это попытка дать читателям с самым разным уровнем подготовки эффективный инструмент мышления в борьбе с новостной паникой. С помощью проверенной статистики и наглядных визуализаций Рослинг описывает ловушки, в которые попадает наш разум, и рассказывает, как в действительности сегодня обстоят дела с бедностью и болезнями, рождаемостью и смертностью, сохранением редких видов животных и глобальными климатическими изменениями.


Кто мы и как сюда попали

Американский генетик Дэвид Райх – один из главных революционеров в области изучения древней ДНК, которая для понимания истории человечества оказалась не менее важной, чем археология, лингвистика и письменные источники. В своей книге Райх наглядно показывает, сколько скрытой информации о нашем далеком прошлом содержит человеческий геном и как радикально геномная революция меняет наши устоявшиеся представления о современных людях. Миграции наших предков, их отношения с конкурирующими видами, распространение культур – все это предстает в совершенно ином свете с учетом данных по ДНК ископаемых останков.


Расстроенная психика. Что рассказывает о нас необычный мозг

Все решения и поступки зарождаются в нашей психике благодаря работе нейронных сетей. Сбои в ней заставляют нас страдать, но порой дарят способность принимать нестандартные решения и создавать шедевры. В этой книге нобелевский лауреат Эрик Кандель рассматривает психические расстройства через призму “новой биологии психики”, плода слияния нейробиологии и когнитивной психологии. Достижения нейровизуализации, моделирования на животных и генетики помогают автору познавать тайны мозга и намечать подходы к лечению психических и даже социальных болезней.


Уравнение Бога. В поисках теории всего

«Уравнение Бога» – это увлекательный рассказ о поиске самой главной физической теории, способной объяснить рождение Вселенной, ее судьбу и наше место в ней. Знаменитый физик и популяризатор науки Митио Каку прослеживает весь путь удивительных открытий – от Ньютоновой революции и основ теории электромагнетизма, заложенных Фарадеем и Максвеллом, до теории относительности Эйнштейна, квантовой механики и современной теории струн, – ведущий к той великой теории, которая могла бы объединить все физические взаимодействия и дать полную картину мира.