Совместимость. Как контролировать искусственный интеллект - [106]

Шрифт
Интервал

. Однако, поскольку Вселенная проявляет определенную степень регулярности, крайне маловероятно, чтобы алгоритм выработал чрезвычайно плохую гипотезу, потому что такая гипотеза почти наверняка была бы отброшена одним из экспериментов.

Глубокое обучение — метод, вызывающий в СМИ всю эту шумиху по поводу ИИ, — является, главным образом, формой контролируемого обучения. Это одно из самых существенных достижений в сфере ИИ за последние десятилетия, поэтому полезно разобраться, как он работает. Более того, некоторые исследователи убеждены, что этот метод позволит создать ИИ-системы человеческого уровня в течение нескольких лет, так что стоит оценить, насколько это вероятно.

Проще всего понять глубокое обучение в контексте конкретной задачи, например обучения умению отличать жирафов от лам. Получив некоторое количество подписанных фотографий тех и других животных, обучающийся алгоритм должен сформировать гипотезу, позволяющую ему классифицировать неподписанные изображения. С точки зрения компьютера изображение есть не более чем большая таблица с числами, каждое из которых соответствует одному из трех RGB-значений одного пикселя изображения. Итак, вместо гипотезы го, которая принимает позицию на доске и ход как входной сигнал и решает, является ли ход допустимым, нам нужна гипотеза «жираф−лама», которая брала бы таблицу чисел в качестве входа и предсказывала категорию (жираф или лама).

Возникает вопрос: что это должна быть за гипотеза? За последние 50 с лишним лет исследования компьютерного зрения было опробовано много подходов. Сегодня фаворитом является глубокая сверточная нейронная сеть. Разберем по пунктам. Она называется сетью, потому что представляет собой комплексное математическое выражение, составленное упорядоченным образом из множества меньших выражений, причем композиционная структура имеет форму сети. (Такие сети часто называют нейронными, потому что их разработчики вдохновляются сетями нейронов головного мозга.) Она называется сверточной, потому что это хитрый математический способ сказать, что структура сети повторяется согласно определенной закономерности по всему входному изображению. Наконец, она называется глубокой, потому что обычно у такой сети много слоев, к тому же это звучит впечатляюще и чуточку зловеще.

Упрощенный пример (упрощенный, потому что реальные сети могут иметь сотни слоев и миллионы узлов) представлен на рис. 23. Сеть в действительности является изображением комплексного корректируемого математического выражения. Каждый узел сети соответствует простому корректируемому выражению, как показано на рисунке. Корректировки осуществляются путем изменения веса каждого входного сигнала, о чем свидетельствует выражение «регулятор уровня». Взвешенная сумма входных сигналов затем проходит контрольную функцию, после чего достигает выходной стороны узла. Обычно контрольная функция подавляет малые значения и пропускает большие.

Сеть обучается, просто «подкручивая все ручки регулировки громкости», уменьшая ошибку прогнозирования по подписанным примерам. Все очень просто: ни магии, ни особенно хитрых алгоритмов. Выяснение того, в какую сторону крутить ручки, чтобы уменьшить ошибку, — это самый обычный случай вычисления того, как изменение каждого веса изменит ошибку в выходном слое. Это ведет к простой формуле проведения ошибки обратным ходом от выходного слоя к входному с подкручиванием ручек по пути.



Удивительно, но процесс работает! В задаче распознавания объектов на фотографиях алгоритмы глубокого обучения продемонстрировали потрясающие результаты. Первый намек на них дал конкурс 2012 г. ImageNet, участникам которого предлагались обучающие данные, состоящие из 1,2 млн подписанных изображений из 1000 категорий, на основании которых алгоритм должен был подписать категории 100 000 новых изображений[363]. Джефф Хинтон, британский специалист по вычислительной психологии, стоявший у истоков первой революции нейронных сетей в 1980-х гг., экспериментировал с очень большой глубокой сверточной сетью: 650 000 узлов и 60 млн параметров. Со своей группой в Университете Торонто он добился на ImageNet уровня ошибок в 15 % — резкое улучшение по сравнению с предыдущим рекордом — 26 %[364]. К 2015 г. десятки команд использовали методы глубокого обучения, и уровень ошибок упал до 5 %, что сопоставимо с результатами человека, потратившего несколько недель на обучение распознаванию тысяч категорий этого теста[365]. К 2017 г. уровень ошибок у машин составил 2 %.

Примерно в тот же период были достигнуты сравнимые улучшения в распознавании речи и машинном переводе на основе аналогичных методов. В совокупности это три самые важные сферы применения ИИ. Глубокое обучение сыграло важную роль и в приложениях для обучения с подкреплением, например в изучении функции ценности, с помощью которой AlphaGo оценивает желательность возможных будущих позиций, а также в освоении регуляторов сложного роботизированного поведения.

В то же время мы очень слабо понимаем, почему глубокое обучение так хорошо работает. Пожалуй, лучшее объяснение заключается в глубине глубоких сетей: поскольку они имеют много слоев, каждый слой может изучить относительно простое преобразование входного сигнала в выходной, и множество этих простых преобразований в совокупности дает сложное преобразование, необходимое для перехода от фотографии к определению категории. Кроме того, глубокие сети для распознавания визуальных образов имеют встроенную структуру, усиливающую трансляционную и масштабную инвариантность. Это означает, что собака является собакой, независимо от того, в каком месте изображения находится и насколько большой выглядит на нем.


Рекомендуем почитать
Монеты - свидетели прошлого

Новая книга профессора Московского университета Г. А. Федорова-Давыдова написана в научно-популярной форме, ярко и увлекательно. Она представляет собой очерки истории денежного дела в античных государствах Средиземноморья, средневековой Западной Европе, странах Востока, на Руси (от первых «златников» и «сребреников» князя Владимира до реформ Петра 1)„ рассказывается здесь также о монетах нового времени; специальный раздел посвящен началу советской монетной чеканки. Автор показывает, что монеты являются интересным и своеобразным историческим источником.


Летопись электричества

Книга в легкой и доступной форме рассказывает об истории электротехники и немного касается самого начального этапа радиотехники. Автор дает общую картину развития знаний об электричестве, применения этих знаний в промышленности и технике. В книге содержится огромное количество материала, рисующего как древнейшие времена, так и современность с её проблемами науки и техники. В русской литературе — это первая попытка дать читателю систематическое изложение накопленных в течение веков фактов, которые представляют грандиозный путь развития учения об электричестве и его практического применения.


Погода интересует всех

Когда у собеседников темы для разговора оказываются исчерпанными, как правило, они начинают говорить о погоде. Интерес к погоде был свойствен человеку всегда и надо думать, не оставит его и в будущем. Метеорология является одной из древнейших областей знания Книга Пфейфера представляет собой очерк по истории развития метеорологии с момента ее зарождения и до современных исследований земной атмосферы с помощью ракет и спутников. Но, в отличие от многих популярных книг, освещающих эти вопросы, книга Пфейфера обладает большим достоинством — она знакомит читателя с интереснейшими проблемами, которые до сих пор по тем или иным причинам незаслуженно мало затрагиваются в популярной литературе.


Зеленый пожар

Сорняки — самые древние и злостные враги хлебороба. Зеленым пожаром охвачены в настоящее время все земледельческие районы земного шара. В книге рассказывается об истории и удивительной жизненной силе сорных растений, об ожесточенной борьбе земледельца с сорняками и путях победы над грозным противником. - Книга в увлекательной и популярной форме рассказывает о борьбе с самым древним и злостным врагом хлеборобов — сорняками (первое издание — 1981 г). В ней даны сведения об истории и биологии сорняков, об их взаимоотношениях с культурными растениями.


Пчелы. Что человек и пчела значат друг для друга

Пчелы гораздо древнее, чем люди: когда 4–5 миллионов лет назад предшественники Homo sapiens встретились с медоносными пчелами, те жили на Земле уже около 5 миллионов лет. Пчелы фигурируют в мифах и легендах Древних Египта, Рима и Греции, Индии и Скандинавии, стран Центральной Америки и Европы. От повседневной работы этих трудолюбивых опылителей зависит жизнь животных и людей. Международная организация The Earthwatch Institute официально объявила пчел самыми важными существами на планете, их вымирание будет означать конец человечества.


Лаять не на то дерево

Многие традиционные советы о том, как преуспеть в жизни, логичны, обоснованны… и откровенно ошибочны. В своей книге автор собрал невероятные научные факты, объясняющие, от чего на самом деле зависит успех и, что самое главное, как нам с вами его достичь. Для широкого круга читателей.


Фактологичность

Специалист по проблемам мирового здравоохранения, основатель шведского отделения «Врачей без границ», создатель проекта Gapminder, Ханс Рослинг неоднократно входил в список 100 самых влиятельных людей мира. Его книга «Фактологичность» — это попытка дать читателям с самым разным уровнем подготовки эффективный инструмент мышления в борьбе с новостной паникой. С помощью проверенной статистики и наглядных визуализаций Рослинг описывает ловушки, в которые попадает наш разум, и рассказывает, как в действительности сегодня обстоят дела с бедностью и болезнями, рождаемостью и смертностью, сохранением редких видов животных и глобальными климатическими изменениями.


Кто мы и как сюда попали

Американский генетик Дэвид Райх – один из главных революционеров в области изучения древней ДНК, которая для понимания истории человечества оказалась не менее важной, чем археология, лингвистика и письменные источники. В своей книге Райх наглядно показывает, сколько скрытой информации о нашем далеком прошлом содержит человеческий геном и как радикально геномная революция меняет наши устоявшиеся представления о современных людях. Миграции наших предков, их отношения с конкурирующими видами, распространение культур – все это предстает в совершенно ином свете с учетом данных по ДНК ископаемых останков.


Расстроенная психика. Что рассказывает о нас необычный мозг

Все решения и поступки зарождаются в нашей психике благодаря работе нейронных сетей. Сбои в ней заставляют нас страдать, но порой дарят способность принимать нестандартные решения и создавать шедевры. В этой книге нобелевский лауреат Эрик Кандель рассматривает психические расстройства через призму “новой биологии психики”, плода слияния нейробиологии и когнитивной психологии. Достижения нейровизуализации, моделирования на животных и генетики помогают автору познавать тайны мозга и намечать подходы к лечению психических и даже социальных болезней.


Уравнение Бога. В поисках теории всего

«Уравнение Бога» – это увлекательный рассказ о поиске самой главной физической теории, способной объяснить рождение Вселенной, ее судьбу и наше место в ней. Знаменитый физик и популяризатор науки Митио Каку прослеживает весь путь удивительных открытий – от Ньютоновой революции и основ теории электромагнетизма, заложенных Фарадеем и Максвеллом, до теории относительности Эйнштейна, квантовой механики и современной теории струн, – ведущий к той великой теории, которая могла бы объединить все физические взаимодействия и дать полную картину мира.