Сомневайся во всем. С комментариями и иллюстрациями - [15]
Декарт предлагает конкретный способ, которым следует начинать исследование. Допустим, мы еще не знаем, с какой стороны подступиться к некоему сложному явлению. В этом случае можно просто попытаться вычленить какие-либо самоочевидные истины, пусть даже без разбора или системы. Это позволит понять, можно ли на их основе вывести какое-либо другое знание, а на основе него – последующее.
В-третьих, отметим, наконец, что не нужно с самого начала браться за исследование трудных вещей, но прежде, чем приступать к разрешению каких-либо определенных вопросов, нужно сначала собрать все без разбора сами собой пришедшие в голову сведения, затем постепенно просмотреть их, чтобы узнать, нельзя ли вывести из них какие-нибудь другие, из этих последних еще и т. д. Затем, сделав это, нужно тщательно обдумать все найденные истины, внимательно исследовать, почему одни из них оказалось возможным найти скорее и легче, чем другие, и что они собой представляют, дабы, приступая к разрешению какого-либо определенного вопроса, мы отсюда узнали также, с исследования чего лучше начинать прежде всего.
Метод познания от простого и самоочевидного к более сложному, по мысли Декарта, должен быть применен в любой науке. Он иллюстрирует этот метод тем, насколько легко выявить пропорцию между числами, если идти последовательно, и насколько трудно, если этот принцип не соблюдается. Например, понимая, что за удвоением 3 идет 6, легко продолжить процесс удвоения далее: 12, 24, 48. Однако, если нам даны числа вне последовательности удвоения, например, 3 и 48, то чрезвычайно трудно догадаться, по какому принципу следует отыскать недостающие числа. Именно поэтому получить новое знание в науке очень трудно, если ученый нарушает правила декартова метода, и относительно легко, если ему следовать.
Например, заметив, что число 6 есть удвоенное 3, я буду затем искать удвоенное 6, т. е. 12, и далее, если это мне окажется нужным, удвоенное 12, т. е. 24, потом удвоенное 24, т. е. 48, и т. д. и т. д. Из этого я без труда сделаю вывод, что между числами 3 и 6 существует то же отношение, что и между 6 и 12, между 12 и 24 и т. д., и, следовательно, числа 3, 6, 12, 24, 48 и другие последовательно пропорциональны (continue proportionales). Отсюда, хотя бы все это было настолько просто, что казалось бы детской забавой, тщательно обдумав, я узнаю, в чем заключаются все вопросы, касающиеся связей или соотношений вещей, и в каком порядке их нужно исследовать. Этим и исчерпывается все содержание чистой математики.
Действительно, я замечаю, во-первых, что найти удвоенное 6 не труднее, чем удвоенное 3, что всюду подобным образом найденное соотношение между какими бы то ни было двумя величинами может быть дано в бесчисленном множестве других величин, находящихся в том же отношении, и что сущность трудности не изменяется, рассматривается ли три, четыре или большее число таких величин, так как нужно отыскивать каждое из соотношений по отдельности, не обращая внимания на все другие. Далее, я замечаю, что хотя для данных величин 3 и 6 я нахожу третью, последовательно пропорциональную им, т. е. 12, но что найти для двух данных крайних величин, а именно 3 и 12, промежуточную, т. е. 6, не является столь же легким делом. Обдумав это, можно ясно увидеть, что здесь мы имеем дело с трудностью совсем другого рода, чем предшествующие, ибо для нахождения промежуточной пропорциональной необходимо в одно и то же время мыслить о двух крайних и об отношении между ними, чтобы получить путем их деления некую новую величину; это действие очень отличается от того, когда для двух данных величин отыскивается третья последовательно пропорциональная. Следуя далее, я рассматриваю, одинаково ли легко найти промежуточные пропорциональные величины 6 и 12 для двух данных крайних 3 и 24. Здесь приходится сталкиваться с трудностью иного рода и гораздо более серьезной, чем предшествовавшие, ибо здесь нужно думать не только об одной или двух величинах одновременно, но о трех, для того чтобы найти для них четвертую. Можно пойти еще дальше и для данных только 3 и 48 узнать, не будет ли еще труднее найти одно из промежуточных и пропорциональных им чисел 6, 12, 24, как это может показаться с первого взгляда. Но тотчас же обнаружится, что эту трудность можно расчленить и упростить, если найти сначала лишь одно промежуточное пропорциональное число между 3 и 48, именно 12, затем другое промежуточное пропорциональное между 3 и 12, а именно 6, другое между 12 и 48, а именно 24, и таким образом привести ее ко второму роду трудности, который мы уже изложили.
Из всего предшествующего мы видим, как можно прийти к познанию одной и той же вещи различными путями, из которых один более труден и более темен, чем другой. Например, если для отыскания четырех последовательно пропорциональных чисел – 3, 6, 12, 24 – даются два последовательных числа – 3 и 6, или 6 и 12, или 12 и 24, – то для того, чтобы найти посредством их остальные, действие производится очень легко; и в этом случае можно сказать, что искомое соотношение исследуется прямо. Но если дается по два числа через одно, а именно 3 и 12 или 6 и 24, для того чтобы найти по ним другие, можно сказать, что трудность исследуется косвенно первым способом. Таким же образом, если даются два крайних числа 3 и 24, чтобы найти для них промежуточные 6 и 12, то в этом случае трудность исследуется косвенно вторым способом. Я мог бы следовать таким же образом и дальше и извлечь из одного этого примера множество еще и других следствий, но тех, которые я уже вывел, будет достаточно для того, чтобы читатель видел, что я разумею под положением, выведенным непосредственно или косвенно, и знал, что простейшие и элементарнейшие вещи, будучи поняты, помогут многое найти в других науках тому, кто внимательно вдумывается и применяет к исследованию всю остроту своего ума.
Рене Декарт – выдающийся математик, физик и физиолог. До сих пор мы используем созданную им математическую символику, а его система координат отражает интуитивное представление человека эпохи Нового времени о бесконечном пространстве. Но прежде всего Декарт – философ, предложивший метод радикального сомнения для решения вопроса о познании мира. В «Правилах для руководства ума» он пытается доказать, что результатом любого научного занятия является особое направление ума, и указывает способ достижения истинного знания.
В настоящий том входят три сочинения знаменитого философа: «Рассуждения о методе», «Начала философии», «Страсти души». «Я мыслю, следовательно – существую!» – самая знаменитая цитата мыслителя. Что она значит на самом деле, в чем ее суть?
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Если рассуждение это покажется слишком длинным для прочтения за один раз, то его можно разделить на шесть частей. В первой окажутся различные соображения относительно наук; во второй – основные правила метода, найденного автором; в третьей – некоторые из правил морали, извлеченных автором из этого метода; в четвертой – доводы, с помощью коих он доказывает существование Бога и человеческой души, которые составляют основание его метафизики; в пятой можно будет найти последовательность вопросов физики, какие он рассмотрел, и, в частности, объяснение движения сердца и рассмотрение некоторых других трудных вопросов, относящихся к медицине, а также различие, существующее между нашей душой и душой животных; и в последней – указание на то, что, по мнению автора, необходимо для того, чтобы продвинуться в исследовании природы дальше, чем это удалось ему, а также объяснение соображений, побудивших его писать.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В настоящий том входят произведения французского философа XVII в., представляющие достаточно полную картину его воззрений на мир, познание, человека: «Правила для руководства ума» (в новом переводе), «Мир, или Трактат о свете», «Рассуждение о методе», «Первоначала философии» и др. Включенная в том избранная переписка (впервые публикуемая на русском языке) способствует лучшему уяснению взглядов мыслителя. Впервые на русском языке публикуется работа «Замечания на некую программу, изданную в Бельгии в конце 1647 года…».http://fb2.traumlibrary.net.
Монография посвящена исследованию становления онтологической парадигмы трансгрессии в истории европейской и русской философии. Основное внимание в книге сосредоточено на учениях Г. В. Ф. Гегеля и Ф. Ницше как на основных источниках формирования нового типа философского мышления.Монография адресована философам, аспирантам, студентам и всем интересующимся проблемами современной онтологии.
Книга выдающегося польского логика и философа Яна Лукасевича (1878-1956), опубликованная в 1910 г., уже к концу XX века привлекла к себе настолько большое внимание, что ее начали переводить на многие европейские языки. Теперь пришла очередь русского издания. В этой книге впервые в мире подвергнут обстоятельной критике принцип противоречия, защищаемый Аристотелем в «Метафизике». В данное издание включены четыре статьи Лукасевича и среди них новый перевод знаменитой статьи «О детерминизме». Книга также снабжена биографией Яна Лукасевича и вступительной статьей, показывающей мучительную внутреннюю борьбу Лукасевича в связи с предлагаемой им революцией в логике.
М.Н. Эпштейн – известный филолог и философ, профессор теории культуры (университет Эмори, США). Эта книга – итог его многолетней междисциплинарной работы, в том числе как руководителя Центра гуманитарных инноваций (Даремский университет, Великобритания). Задача книги – наметить выход из кризиса гуманитарных наук, преодолеть их изоляцию в современном обществе, интегрировать в духовное и научно-техническое развитие человечества. В книге рассматриваются пути гуманитарного изобретательства, научного воображения, творческих инноваций.
Книга – дополненное и переработанное издание «Эстетической эпистемологии», опубликованной в 2015 году издательством Palmarium Academic Publishing (Saarbrücken) и Издательским домом «Академия» (Москва). В работе анализируются подходы к построению эстетической теории познания, проблематика соотношения эстетического и познавательного отношения к миру, рассматривается нестираемая данность эстетического в жизни познания, раскрывается, как эстетическое свойство познающего разума проявляется в кибернетике сознания и искусственного интеллекта.
Автор книги профессор Георг Менде – один из видных философов Германской Демократической Республики. «Путь Карла Маркса от революционного демократа к коммунисту» – исследование первого периода идейного развития К. Маркса (1837 – 1844 гг.).Г. Менде в своем небольшом, но ценном труде широко анализирует многие документы, раскрывающие становление К. Маркса как коммуниста, теоретика и вождя революционно-освободительного движения пролетариата.
Книга будет интересна всем, кто неравнодушен к мнению больших учёных о ценности Знания, о путях его расширения и качествах, необходимых первопроходцам науки. Но в первую очередь она адресована старшей школе для обучения искусству мышления на конкретных примерах. Эти примеры представляют собой адаптированные фрагменты из трудов, писем, дневниковых записей, публицистических статей учёных-классиков и учёных нашего времени, подобранные тематически. Прилагаются Словарь и иллюстрированный Указатель имён, с краткими сведениями о характерном в деятельности и личности всех упоминаемых учёных.