Солнечный луч - [27]
Законы распространения, отражения и преломления света, составляющие сущность так называемой геометрической оптики, были выведены на основании наблюдений и простых опытов. Но эти законы по существу ничего не говорят о физической природе света, его происхождении, источниках получения.
Зрительные образы характеризуются прежде всего яркостью и цветом. Насыщенность окраски, цвета зависит от примеси белого цвета, который как бы «разбавляет» основной цвет. Но и яркость, и цвет — понятия субъективные. Физический смысл яркости света, если отвлечься от субъективности восприятия, обусловлен интенсивностью излучения энергии светящимся телом, источником — плотностью светового потока, исходящего из единицы поверхности источника. Распространяясь во все стороны, световые лучи попадают на другие поверхности, лишенные собственного излучения, и освещают их. Освещенность поверхности — еще одна объективная физическая характеристика — зависит как от яркости источника света, так и от расстояния до него. Поскольку лучи от источника распространяются по всем направлениям прямолинейно, на поверхность падает тем больше лучей, чем ближе к источнику она располагается. Расчеты и измерения показали, что освещенность поверхности обратно пропорциональна квадрату расстояния до источника.
Что касается цвета, то И. Ньютон в 1665—1666 гг. впервые перевел субъективные качества цвета на объективный, точный язык меры, числа, физического закона. Пропустив через отверстие в ставне окна пучок солнечных лучей на трехгранную стеклянную призму, он получил на экране разноцветное, радужное изображение отверстия. Подобные опыты ставились и до Ньютона. Но величие гения в том и состоит, что он умеет по-новому взглянуть на старые, известные многим факты, дать им более глубокое истолкование. Ньютон пришел к выводу, что стеклянная призма разлагает белый солнечный свет на простые составные цвета. Как проверить это предположение? Может быть, выделить у радужного веера призмы один простой луч, например красный, и снова пропустить его через другую призму? Опыт был поставлен, и оказалось, что нового разложения цветов не произошло. Следовательно, выделенные призмой из белого цвета отдельные лучи действительно простые. После смешения разделенных призмой лучей можно снова получить исходный белый цвет. Свой вывод Ньютон сформулировал так: «Белизна и все серые цвета, между белым и черным, могут быть составлены из цветов, и белый солнечный цвет составлен из всех первичных цветов, смешанных в должной пропорции» [И. Ньютон. Лекции по оптике. Цит. по: С. И. Вавилов. Исаак Ньютон. М., Изд-во АН СССР, 1981, с. 84.].
Пока все цветные лучи распространяются одним общим пучком, мы их не различаем, воспринимаем как белый цвет, который кажется нам простым. Но когда они преломляются в стеклянной призме, или в капельках влаги после дождя в атмосфере, или в луже около автомобильной стоянки, покрытой радужной пленкой бензина, каждый цветной луч преломляется по-своему, сильнее или слабее. Призма как бы развертывает компоненты белого луча в виде цветного веера. Это явление в оптике носит название дисперсии.
В веере лучей, выходящих из стеклянной призмы, порядок цветов тот же, что в радуге: красный цвет сменяет оранжевый, желтый, зеленый, далее идет голубой, синий и фиолетовый цвета. Мнемоническая фраза «Каждый охотник желает знать, где сидит фазан» помогает запомнить этот порядок. Из лучей, входящих в состав солнечного света, зеленые, синие и фиолетовые преломляются сильнее, чем красные, оранжевые и желтые. Поэтому первый луч Солнца при восходе зеленый или синий, так же как и последний, прощальный луч заходящего Солнца. Однако зеленый луч виден только при очень чистом и спокойном однородном воздухе, когда вплоть до горизонта отсутствуют конвекционные восходящие токи в атмосфере. Поэтому лучше всего наблюдать зеленый луч, когда Солнце встает из спокойного моря.
Пространственное разделение простых цветов дало в руки ученых первый объективный признак, лежащий в основе восприятия цвета. Другой классический опыт Ньютона раскрыл еще более удивительные свойства света. Когда ученый на стеклянную пластинку помещал линзу с очень небольшой выпуклостью, а затем освещал ее белым светом, вокруг точки соприкосновения линзы с пластинкой появлялось несколько концентрических радужных колец. Еще более удивительную картину он обнаружил после того, как осветил линзу одним из простых лучей (красным, синим и др.). В этом случае вокруг точки соприкосновения линзы со стеклом образовались концентрические светлые (красные, синие) и черные кольца. Чем дальше от центра, тем теснее прилегали кольца друг к другу. Измерив радиусы черных колец, Ньютон установил, что они относятся друг к другу, как квадратные корни из целых четных чисел: 2, 4, 6, 8 и т. д.
В этом опыте удивительным и необъяснимым было наличие черных колец, несмотря на равномерное освещение линзы падающим светом, что давало основание предположить существование какой-то скрытой периодичности свойств светового потока. Необходимым условием появления обнаруженных Ньютоном колец было наличие тонкого зазора между стеклом и линзой. Ньютон рассчитал, что отношение толщин зазора для светлых (красных, синих и др.) и темных (черных) колец соответствует последовательным целым числам (1, 2, 3, 4 и т. д.). Для разных простых лучей ширина колец, так же как и ширина зазора, различна. Последняя может служить лучшей количественной оценкой простого цвета, чем показатель преломления, величина которого зависит от преломляющей среды. Величина, соответствующая ширине первого зазора между стеклом и линзой, получила позднее название длины волны данного простого луча К. Волны лучей видимого света имеют очень малую длину — миллионные доли миллиметра и меньше. Наименьшая она у фиолетовых лучей, наибольшая — у красных. Но об этом подробнее — в специальном разделе, посвященном цвету.
Авторы книги знакомят читателей с достижениями сравнительно молодой пауки - радиобиологии. В книге рассматривается роль ядерной радиации в эволюции жизни на Земле, воздействие этого вида радиации на живые организмы, искусственная радиоактивность и способы получения атомной энергии. Особое внимание авторы уделяют мирному использованию атомной энергии в медицине, сельском хозяйстве, промышленности и в исследованиях Космоса. Книга рассчитана на широкий круг читателей, интересующихся достижениями отечественной науки.
Билл Шутт – бывший профессор биологии в LIU-Post и научный сотрудник в Американском музее естествознания. Мир кровожадных животных, который открывает Билл Шутт, отправит вас в омерзительно-увлекательное путешествие, где вампировые летучие мыши, пиявки и прочие кровососущие станут главными героями почти детективных историй. Это одновременно самая пугающая и забавная книга о биологии и истории. Вряд ли вы где-нибудь еще прочтете такой подробный рассказ о жизни кровожадных животных и насекомых.
Кожа человека – удивительный орган, один из немногих, которые мы можем увидеть и тем более потрогать. Но несмотря на кажущуюся доступность, знаем мы о ней еще очень мало. Например, каким было отношение к коже в XVIII, XIX, XX веках и какое оно в современном мире, почему у одних народов принято прятать кожу под слоями одежды, а другие носят лишь набедренные повязки. Вместе с Монти Лиманом, врачом-дерматологом, вы погрузитесь в мир кожи, узнаете ее устройство и скрытые физиологические процессы, разберетесь в механизмах старения и волшебстве касаний, познакомитесь с населением кожи – микробиомом, узнаете о заболеваниях и способах лечения, а также разберетесь, как кожа связана с нашим мозгом и сознанием, узнаете больше о ее социальной и духовной стороне.
Академик АМН СССР рассказывает об иммунитете, силах, которые защищают наш организм от микробов, вирусов, раковых заболеваний, хранят неповторимую индивидуальность нашего телесного 'я', говорит о болезнях, возникающих при нарушении иммунитета и мерах борьбы с ними, а также об использовании клеток иммунной системы в биотехнологии (производстве лечебных и диагностических препаратов, сверхчувствительных реагентов), об использовании 'раковых клеток в мирных целях'. Издание рассчитано на самые широкие круги читателей.
Иммунология — наука о сохранении индивидуальности организма, о его иммунитете. Познание явлений иммунитета ведет к раскрытию тайн рождения и старения организмов, причин отторжения органов при их трансплантации и возникновения опухолей, к полной победе над инфекциями. О процессе этого познания, полного драматизма и парадоксов, и рассказывает автор книги. Она может быть полезна лекторам, пропагандистам, слушателям народных университетов естественнонаучных знаний и всем, кто интересуется современными проблемами биологии.
Acacia mangium — это быстрорастущее тропическое вечнозеленое дерево, которое при благоприятных условиях может вырасти до 30 м в высоту и до 50 см в толщину. Низинный вид, связанный с окраинами тропических лесов и нарушенными, хорошо дренированными кислыми почвами. Аборигенное растение для Папуа, Западной Ириан-Джайи и Молуккских островов в Индонезии, Папуа-Новой Гвинеи и северо-восточной части Квинсленда в Австралии. Из-за быстрого роста и устойчивости к очень бедным почвам A. mangium была завезена в некоторые страны Азии, Африки и западного полушария, где она используется в качестве плантационного дерева.
«Ой, фу!» Табу в нашем мире живут столько же, сколько существует общество. Все мы стремимся быть ухоженными, хорошо пахнуть, но стоит нам остаться наедине с самим собой, как наше тело начинает жить собственной жизнью: палец сам тянется к ноздре – избавиться от накопившегося содержимого, нос – понюхать собственную кожу на предмет чужеродных запахов, а живот… Живот спешит скорее «выдохнуть» все, что копил в себе целый день. Все это – естественно, но мы упорно продолжаем этого стесняться. А стеснение нередко приводит к неприятным казусам в повседневности, личной жизни и даже к проблемам со здоровьем.