Солнечное вещество - [37]

Шрифт
Интервал

Много труда положил он на то, чтобы усовершенствовать вибратор — так называл он металлические шары, вокруг которых колеблются электромагнитные волны.

Он добивался того, чтобы искры в вибраторе стали более мощными и энергичными и чтобы направление электрического тока менялось с возможно большей частотой.

После двух лет опытов и вычислений ему удалось, наконец, построить надежный вибратор.

Он взял два латунных цилиндра длиною в 9 сантиметров и к каждому из них приделал на конце по латунному шару. Один цилиндр он поставил шаром вверх, а другой повесил над ним шаром вниз. От шара до шара оставался узкий перерыв в 3 миллиметра.

Стоило теперь соединить цилиндры с индукционной катушкой — один с одним полюсом, другой с другим, — и от шара к шару, через трехмиллиметровый промежуток, начинали сыпаться электрические искры.

В свое время опыты Феддерсена показали: направление электрического тока, скачущего искрой от шара к шару, не остается все время одинаковым. Оно беспрерывно меняется, оно колеблется с невообразимой быстротой.

Но в разряднике Феддерсена направление электрического тока менялось каждые две-три миллионные доли секунды, а в усовершенствованном вибраторе Герца — так гласили точные математические вычисления — оно менялось в тысячи раз быстрее. Даже проворное зеркало необыкновенных часов не могло угнаться за такими частыми колебаниями тока, не могло разложить видимую глазу искру на отдельные вспышки. От вспышки до вспышки проходила теперь не миллионная, а миллиардная доля секунды.

Усовершенствованный вибратор Герца был готов. Оставалось усовершенствовать и резонатор, — так Герц называл свой улавливатель электромагнитных волн, свой проволочный круг с перерывом для искры.

В первых опытах Герца резонатор откликался на электромагнитные волны только в близком соседстве от искры. Герц хотел усилить чуткость резонатора, заставить его отзываться на искру, скачущую между шарами, даже тогда, когда он стоит далеко от шаров.

Прежде всего он уменьшил размеры резонатора. Новый проволочный круг был теперь всего только семи сантиметров в диаметре — он свободно умещался на ладони. Сделан он был из тонкой медной проволоки. Перед тем как пустить проволоку в дело, Герц насадил на один ее конец крохотный отполированный латунный шарик, а другой конец заострил. Потом согнул проволоку в круг.

Рис. 4. Резонатор Герца


На этот раз он оставил между ее концами лишь крохотный перерыв — каких-нибудь несколько сотых долей миллиметра. Простым глазом такую щелочку и не заметишь, а потому Герц запасся увеличительным стеклом (рис. 4).

Когда все было готово, он включил индукционную катушку, соединенную с вибратором. В трехмиллиметровом промежутке между гладко отполированными латунными шарами загорелись трещащие искры. Невидимые электромагнитные колебания наполнили пространство.

Глядя сквозь увеличительное стекло на перерыв в резонаторе, Герц заметил крохотные ответные искорки. Этими бледными тонкими искорками резонатор подтверждал, что его коснулись электромагнитные колебания — невидимые электромагнитные волны, «лучи электрической силы», которые посылал в пространство вибратор.

Множество опытов проделал Герц с лучами электрической силы. Счастливый случай помог ему совершить важное открытие. В лаборатории, в которой он работал, была большая железная печка.

Рис. 5. Прожектор


Однажды во время опытов Герц случайно поставил свой резонатор неподалеку от нее. И что же? Оказалось: чем ближе к печке, тем увереннее и отчетливее отзывается резонатор на электромагнитные волны. Значит, близость железной печки чем-то помогает резонатору, чем-то облегчает его работу. Чем же? Герц сразу угадал чем: видно, печка отражает лучи электрической силы, и на резонатор теперь падают не только те электромагнитные волны, которые пришли прямой дорогой от вибратора, но также и те, которые отразились от железной печки.

Волны действуют теперь соединенными силами, и потому искра в резонаторе стала вспыхивать ярче.

Оценив ту услугу, которую оказала электромагнитным волнам металлическая печка, Герц задумался над тем, нельзя ли сделать помощь металла еще более действенной.

Тут ему сразу припомнился прожектор. Прожектор — это обыкновенное зеркало, но только не плоское, а параболическое, кривое (рис. 5).

Рис 6. Зеркало для лучей электрической силы


Когда в фокусе этого зеркала зажигается лампочка, зеркало собирает все лучи, расходящиеся от лампочки, в один пучок и посылает их в одну и ту же сторону. Собранные вместе, лучи сияют гораздо ярче, чем порознь.

Нельзя ли устроить такой же прожектор, такой же собиратель лучей, но только не для световых лучей, испускаемых лампочкой, а для лучей электрической силы? Нельзя ли этим прожектором собрать в один пучок и направить в одну сторону электрические лучи, которые вибратор разбрасывает по всем направлениям?

Герц немедленно принялся за работу. Он раздобыл большой цинковый лист, высотою и шириною в два метра. Этот лист он согнул так, чтобы получилась точно рассчитанная кривая поверхность, которую математики называют параболическим цилиндром (рис. 6).

Рис. 7. Цинковый прожектор Герца


Еще от автора Матвей Петрович Бронштейн
Занимательная квантовая физика

Книга известного советского физика Матвея Бронштейна «Занимательная квантовая физика» познакомит читателя с миром крошечных, невидимых для простого глаза частиц — атомов и электронов. А также расскажет об ученых: Вильгельме Рентгене, Анри Беккереле, Пьере и Марии Кюри и многих других, обнаруживших и изучавших природу излучения. Как Дмитрий Менделеев предсказывал свойства еще не открытых элементов? Для чего раньше использовали радий? Что такое альфа-частицы? Почему на некоторых минералах геологи обнаруживают странные ореолы? Обо всем этом читатель узнает из книги. Для среднего школьного возраста.


Атомы и электроны

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Солнечное вещество и другие повести, а также Жизнь и судьба Матвея Бронштейна и Лидии Чуковской

Матвей Бронштейн (1906–1938) за свою короткую жизнь успел войти в историю и фундаментальной физики, и научно-художественной литературы. Его приключенческие повести о научных открытиях и изобретениях стали образцом нового литературного жанра. Он рассказал о веществе, обнаруженном сначала на Солнце и лишь много лет спустя на Земле. О случайном открытии невидимых X-лучей, принесших Рентгену самую первую Нобелевскую премию по физике, а человечеству – прибор, позволяющий видеть насквозь. И успел рассказать об изобретении радио, без которого не было бы ни телевидения, ни интернета.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.