Солнечное вещество - [37]

Шрифт
Интервал

Много труда положил он на то, чтобы усовершенствовать вибратор — так называл он металлические шары, вокруг которых колеблются электромагнитные волны.

Он добивался того, чтобы искры в вибраторе стали более мощными и энергичными и чтобы направление электрического тока менялось с возможно большей частотой.

После двух лет опытов и вычислений ему удалось, наконец, построить надежный вибратор.

Он взял два латунных цилиндра длиною в 9 сантиметров и к каждому из них приделал на конце по латунному шару. Один цилиндр он поставил шаром вверх, а другой повесил над ним шаром вниз. От шара до шара оставался узкий перерыв в 3 миллиметра.

Стоило теперь соединить цилиндры с индукционной катушкой — один с одним полюсом, другой с другим, — и от шара к шару, через трехмиллиметровый промежуток, начинали сыпаться электрические искры.

В свое время опыты Феддерсена показали: направление электрического тока, скачущего искрой от шара к шару, не остается все время одинаковым. Оно беспрерывно меняется, оно колеблется с невообразимой быстротой.

Но в разряднике Феддерсена направление электрического тока менялось каждые две-три миллионные доли секунды, а в усовершенствованном вибраторе Герца — так гласили точные математические вычисления — оно менялось в тысячи раз быстрее. Даже проворное зеркало необыкновенных часов не могло угнаться за такими частыми колебаниями тока, не могло разложить видимую глазу искру на отдельные вспышки. От вспышки до вспышки проходила теперь не миллионная, а миллиардная доля секунды.

Усовершенствованный вибратор Герца был готов. Оставалось усовершенствовать и резонатор, — так Герц называл свой улавливатель электромагнитных волн, свой проволочный круг с перерывом для искры.

В первых опытах Герца резонатор откликался на электромагнитные волны только в близком соседстве от искры. Герц хотел усилить чуткость резонатора, заставить его отзываться на искру, скачущую между шарами, даже тогда, когда он стоит далеко от шаров.

Прежде всего он уменьшил размеры резонатора. Новый проволочный круг был теперь всего только семи сантиметров в диаметре — он свободно умещался на ладони. Сделан он был из тонкой медной проволоки. Перед тем как пустить проволоку в дело, Герц насадил на один ее конец крохотный отполированный латунный шарик, а другой конец заострил. Потом согнул проволоку в круг.

Рис. 4. Резонатор Герца


На этот раз он оставил между ее концами лишь крохотный перерыв — каких-нибудь несколько сотых долей миллиметра. Простым глазом такую щелочку и не заметишь, а потому Герц запасся увеличительным стеклом (рис. 4).

Когда все было готово, он включил индукционную катушку, соединенную с вибратором. В трехмиллиметровом промежутке между гладко отполированными латунными шарами загорелись трещащие искры. Невидимые электромагнитные колебания наполнили пространство.

Глядя сквозь увеличительное стекло на перерыв в резонаторе, Герц заметил крохотные ответные искорки. Этими бледными тонкими искорками резонатор подтверждал, что его коснулись электромагнитные колебания — невидимые электромагнитные волны, «лучи электрической силы», которые посылал в пространство вибратор.

Множество опытов проделал Герц с лучами электрической силы. Счастливый случай помог ему совершить важное открытие. В лаборатории, в которой он работал, была большая железная печка.

Рис. 5. Прожектор


Однажды во время опытов Герц случайно поставил свой резонатор неподалеку от нее. И что же? Оказалось: чем ближе к печке, тем увереннее и отчетливее отзывается резонатор на электромагнитные волны. Значит, близость железной печки чем-то помогает резонатору, чем-то облегчает его работу. Чем же? Герц сразу угадал чем: видно, печка отражает лучи электрической силы, и на резонатор теперь падают не только те электромагнитные волны, которые пришли прямой дорогой от вибратора, но также и те, которые отразились от железной печки.

Волны действуют теперь соединенными силами, и потому искра в резонаторе стала вспыхивать ярче.

Оценив ту услугу, которую оказала электромагнитным волнам металлическая печка, Герц задумался над тем, нельзя ли сделать помощь металла еще более действенной.

Тут ему сразу припомнился прожектор. Прожектор — это обыкновенное зеркало, но только не плоское, а параболическое, кривое (рис. 5).

Рис 6. Зеркало для лучей электрической силы


Когда в фокусе этого зеркала зажигается лампочка, зеркало собирает все лучи, расходящиеся от лампочки, в один пучок и посылает их в одну и ту же сторону. Собранные вместе, лучи сияют гораздо ярче, чем порознь.

Нельзя ли устроить такой же прожектор, такой же собиратель лучей, но только не для световых лучей, испускаемых лампочкой, а для лучей электрической силы? Нельзя ли этим прожектором собрать в один пучок и направить в одну сторону электрические лучи, которые вибратор разбрасывает по всем направлениям?

Герц немедленно принялся за работу. Он раздобыл большой цинковый лист, высотою и шириною в два метра. Этот лист он согнул так, чтобы получилась точно рассчитанная кривая поверхность, которую математики называют параболическим цилиндром (рис. 6).

Рис. 7. Цинковый прожектор Герца


Еще от автора Матвей Петрович Бронштейн
Атомы и электроны

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Занимательная квантовая физика

Книга известного советского физика Матвея Бронштейна «Занимательная квантовая физика» познакомит читателя с миром крошечных, невидимых для простого глаза частиц — атомов и электронов. А также расскажет об ученых: Вильгельме Рентгене, Анри Беккереле, Пьере и Марии Кюри и многих других, обнаруживших и изучавших природу излучения. Как Дмитрий Менделеев предсказывал свойства еще не открытых элементов? Для чего раньше использовали радий? Что такое альфа-частицы? Почему на некоторых минералах геологи обнаруживают странные ореолы? Обо всем этом читатель узнает из книги. Для среднего школьного возраста.


Солнечное вещество и другие повести, а также Жизнь и судьба Матвея Бронштейна и Лидии Чуковской

Матвей Бронштейн (1906–1938) за свою короткую жизнь успел войти в историю и фундаментальной физики, и научно-художественной литературы. Его приключенческие повести о научных открытиях и изобретениях стали образцом нового литературного жанра. Он рассказал о веществе, обнаруженном сначала на Солнце и лишь много лет спустя на Земле. О случайном открытии невидимых X-лучей, принесших Рентгену самую первую Нобелевскую премию по физике, а человечеству – прибор, позволяющий видеть насквозь. И успел рассказать об изобретении радио, без которого не было бы ни телевидения, ни интернета.


Рекомендуем почитать
Ядерная зима. Что будет, когда нас не будет?

6 и 9 августа 1945 года японские города Хиросима и Нагасаки озарились светом тысячи солнц. Две ядерные бомбы, сброшенные на эти города, буквально стерли все живое на сотни километров вокруг этих городов. Именно тогда люди впервые задумались о том, что будет, если кто-то бросит бомбу в ответ. Что случится в результате глобального ядерного конфликта? Что произойдет с людьми, с планетой, останется ли жизнь на земле? А если останется, то что это будет за жизнь? Об истории создания ядерной бомбы, механизме действия ядерного оружия и ядерной зиме рассказывают лучшие физики мира.


Загадка падающей кошки и фундаментальная физика

Как падающим кошкам всегда удается приземлиться на четыре лапы? Удивительно, сколько времени потребовалось ученым, чтобы ответить на этот вопрос! История изучения этой кошачьей способности почти ровесница самой физики — первая исследовательская работа на тему падающей кошки была опубликована в 1700 г. французом Антуаном Параном, но даже сегодня ученые продолжают находить в ней спорные моменты. В своей увлекательной и остроумной книге физик и заядлый кошатник Грегори Гбур показывает, как попытки понять механику падения кошек помогли разобраться в самых разных задачах в математике, физике, физиологии, неврологии и космической биологии, способствовали развитию фотографии и кинематографа и оказали влияние даже на робототехнику. Поиск ответа на загадку падающей кошки погружает читателей в увлекательный мир науки, из которого они узнают решение головоломки, но также обнаружат, что феномен кошачьего выверта по-прежнему вызывает горячие споры ученых. Автор убежден, что чем больше мы исследуем поведение этих животных, тем больше сюрпризов они нам преподносят.


Атом урана — новый источник энергии

Статья опубликована в журнале «Огонек», № 35 (954), 1945.


Вторжение в физику 20-го века

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Молния и гром

В очередном выпуске серии «Научно-популярная библиотека» рассказывается о том, как возникают молния и гром, какой вред может причинить молния и как защититься от её разрушительного воздействия. В начале книги даются основные сведения об электричестве.