Солнечное вещество - [30]
В наше время научились изготовлять мощные трубки, рассчитанные на электрическое напряжение в шестьсот — семьсот тысяч вольт. Электротехнические заводы давно уже наладили массовое производство рентгеновских трубок и рентгеновских аппаратов. Спрос на них растет с каждым годом.
Какое же применение в жизни нашли себе невидимые лучи, которые открыл скромный вюрцбургский профессор, гениальный немецкий физик Вильгельм Конрад Рентген?
Больше всего они пригодились медицине. Вооружившись лучами Рентгена, врач фотографирует кости в живом человеческом теле, изучает явления, происходящие в легких, в желудке, в сердце. Дело в том, что для лучей Рентгена кости не так прозрачны, как мускулы или железы. Потому и проступают темные очертания костей на фотографическом снимке, сделанном рентгеновскими лучами. А легкие отчетливо видны на снимке потому, что они прозрачнее чем железы или мышцы. Но только изображения легких получаются не темные, а светлые.
Ну а как желудок? Ведь он прозрачен для лучей Рентгена не больше и не меньше, чем все другие органы, находящиеся в брюшной полости человека. Как же возможно фотографировать желудок?
Немецкий ученый Ридер нашел выход из этого затруднения. Пациенту предлагают съесть тарелку каши. Но каша это не простая, а особенная: в ней содержится сернокислый барий. Сернокислый барий менее прозрачен для рентгеновских лучей, чем внутренние органы и мускульные ткани человеческого тела. К тому же он совершенно безвреден: каша с сернокислым барием не очень-то вкусна, но ее можно безо всякой опасности для здоровья съесть сколько угодно. Как только желудок пациента наполнится сернокислым барием — врач немедленно делает рентгеновский снимок. И тогда темные очертания желудка отчетливо возникают на фоне окружающих тканей.
Сбылось все то, о чем сорок лет назад старый редактор Лехер писал в своей газете. Современные врачи уже и представить себе не могут, как это прежняя медицина обходилась без рентгеновских лучей. Заболел ли кто туберкулезом легких, расширением сердца или язвой желудка, ранен ли кто пулей, — врачи просвечивают больного лучами Рентгена, фотографируют пораженные органы тела. Взглянув на фотографический снимок, врач ясно видит, что творится в теле больного, распознает скрытую болезнь.
Но мало того, что лучи Рентгена часто помогают определить болезнь: некоторые тяжелые болезни они и вылечивают.
Так, рентгеновская трубка оказалась в одно и то же время фонарем, освещающим внутренности живого тела, и сосудом, содержащим драгоценное лекарство. Правда, пользоваться этим лекарством следует с большим искусством: разрушая пораженные болезнью ткани, рентгеновские лучи могут нанести ущерб здоровым.
Ну а неживое вещество? Способны ли лучи Рентгена проникать в неживые вещества и обнаруживать в них то, что скрыто от человеческих глаз?
Вот в литейном цехе отлили какую-нибудь деталь. На вид она хороша — казалось бы, лучше и не надо. А какова она внутри? Не попал ли в литье пузырек воздуха, нет ли в глубине металла трещинки, которая при малейшей перегрузке машины выведет деталь из строя?
На помощь инженеру приходят рентгеновские лучи.
При первых опытах Рентгена невидимые лучи проникали только сквозь тонкие слои металла, а в толстых застревали, поглощались. Современные рентгеновские трубки с напряжением в сотни тысяч вольт испускают лучи гораздо более мощные, гораздо глубже «проникающие». Такие лучи легко проходят через слой стали толщиной в десять — пятнадцать сантиметров. От них не скроется ни одна трещинка, ни один пузырек.
Рентгеновский снимок сразу выводит на чистую воду малейший изъян внутри металла.
Зоркие лучи Рентгена несут ответственную службу на заводах. Но еще более тонкую и сложную работу проделывают они в физических лабораториях. Они помогают физикам изучать строение вещества.
В 1912 году немецкие физики Лауэ, Фридрих и Книппинг сделали такой опыт. Они пропустили пучок рентгеновских лучей через кристаллик сернистого цинка. Пройдя сквозь кристаллик, лучи упали на фотографическую пластинку. Когда ученые проявили и отфиксировали пластинку, оказалось, что на ней отпечатался какой-то замысловатый узор, составленный из маленьких темных пятнышек.
Что за узор, откуда он? Лауэ сумел ответить на этот вопрос. Кристалл сернистого цинка состоит из атомов двух веществ: серы и цинка. Эти атомы расположены в пространстве стройными правильными рядами. Внутри кристалла, параллельно каждой его грани, идут, пересекаясь между собой, бесчисленные плоскости. Каждая из этих плоскостей — это геометрически правильная сетка, составленная из атомов.
Лучи Рентгена, проникая сквозь сетку, огибают атомы и рисуют узор на фотографической пластинке. Узор из темных пятнышек. Это не фотография кристалла. Но изучая этот узор, Лауэ с помощью математического расчета установил, как, в каком порядке расположены в кристалле атомы.
Лауэ и его сотрудники стали пропускать лучи Рентгена и через другие кристаллы — поваренную соль, берилл, сернокислый никель. И каждый раз на фотографической пластинке отпечатывался узор из темных точек. Поваренная соль давала один узор, берилл — другой, сернокислый никель — третий.
Книга известного советского физика Матвея Бронштейна «Занимательная квантовая физика» познакомит читателя с миром крошечных, невидимых для простого глаза частиц — атомов и электронов. А также расскажет об ученых: Вильгельме Рентгене, Анри Беккереле, Пьере и Марии Кюри и многих других, обнаруживших и изучавших природу излучения. Как Дмитрий Менделеев предсказывал свойства еще не открытых элементов? Для чего раньше использовали радий? Что такое альфа-частицы? Почему на некоторых минералах геологи обнаруживают странные ореолы? Обо всем этом читатель узнает из книги. Для среднего школьного возраста.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Матвей Бронштейн (1906–1938) за свою короткую жизнь успел войти в историю и фундаментальной физики, и научно-художественной литературы. Его приключенческие повести о научных открытиях и изобретениях стали образцом нового литературного жанра. Он рассказал о веществе, обнаруженном сначала на Солнце и лишь много лет спустя на Земле. О случайном открытии невидимых X-лучей, принесших Рентгену самую первую Нобелевскую премию по физике, а человечеству – прибор, позволяющий видеть насквозь. И успел рассказать об изобретении радио, без которого не было бы ни телевидения, ни интернета.
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.