Солнечное вещество - [29]

Шрифт
Интервал

— Итак, — сказал он, улыбаясь, — вы пришли ко мне взглянуть на невидимые лучи?

— Да, если только возможно увидеть невидимое.

— Самих лучей вы не увидите, конечно, но зато вы увидите, как они действуют. Пройдите, пожалуйста, сюда.

И он указал мне на соседнюю комнату, куда вели провода от катушки Румкорфа. В этой комнате на маленьком столике стоял стеклянный баллон с разреженным воздухом — это и был тот прибор, с помощью которого профессор Рентген открыл свои лучи. Баллон был соединен проводами с индукционной катушкой. Но я не смотрел на баллон: мне бросился в глаза таинственный цинковый ящик, огромный, в целую сажень[24] высотой.

Профессор объяснил мне, что это за ящик. Оказалось — это просто-напросто передвижная камера, которую он построил, чтобы изучать в темноте икс-лучи. В стенке ящика — в той, что приходилась прямо против стеклянного баллона — было круглое окно для невидимых лучей: окно не из стекла, а из алюминия, толщиной в миллиметр, диаметром фута в полтора. Профессор рассказал мне, что обычно он включает ток, потом входит в свой цинковый ящик и плотно закрывает за собой дверь. В ящике темно, как в гробу.

— Войдите же в ящик, — сказал мне Рентген, открывая небольшую дверцу в цинковой стенке. — Там на полке вы найдете кусочек бумаги, покрытый платино-цианистым барием, — добавил он и направился к индукционной катушке.

Я закрыл за собой дверь, и в ящике стало темно. Ощупью я нашел стул. Потом я нащупал полку, а на ней полоску бумаги. Раздались частые удары молоточка в прерывателе катушки Румкорфа — это Рентген начал пропускать ток через свой баллон. Я приставил бумажку к алюминиевому окошечку, но ничего не увидел.

— Видите что-нибудь? — закричал мне профессор Рентген.

— Ровно ничего.

— Значит, напряжение тока недостаточное.

Через несколько минут снова раздался треск прерывателя, и вот тогда-то я впервые увидел действие невидимых лучей. Бумага в моих руках засверкала. По всей ее поверхности, то вспыхивая, то угасая, переливались волны зелено-желтого света. Невидимые лучи струились через алюминиевое окошко, пронизывали мое тело, окружали меня со всех сторон.

— Вставьте книгу между бумагой и алюминием.

Я пошарил и нашел на полке огромный увесистый том. Им-то я и прикрыл бумагу. Но бумага продолжала светиться. Она нисколько не потускнела. Невидимые лучи как ни в чем не бывало проходили сквозь толстую книгу, зелено-желтые волны по-прежнему переливались по бумаге.

Я положил книгу на полку и посмотрел на алюминиевое окошко, изо всех сил стараясь разглядеть удивительные лучи. Но в окошке было темно, и я ничего не увидел и не

почувствовал, хотя и знал, что лучи входят в ящик и пронизывают меня насквозь.

Невидимые лучи оказались и вправду невидимыми. На их присутствие указывала лишь светящаяся бумажка, которую я держал в руке.

Когда профессор Рентген на прощание протянул мне руку, взгляд его уже был устремлен во внутренние комнаты лаборатории — туда, где он оставил прерванную работу».


ПОМОЩНИК ВРАЧА, ИНЖЕНЕРА, УЧЕНОГО


Больше сорока лет[25] прошло с той поры, как вюрцбургский профессор Вильгельм Конрад Рентген открыл невидимые лучи, заставляющие светиться платино-цианистый барий.

В наше время лучи икс — лучи Рентгена — никому больше не представляются чудом. Люди уже давно привыкли к ним. Рентгеновский снимок, показывающий нам строение наших легких, удивляет нас не более, чем телефон на столе или автомобиль, проезжающий мимо наших окон. Ученые исследовали свойства таинственных лучей, инженеры и врачи научились пользоваться лучами, применять их на практике.

Лучи икс, лучи-загадка перестали быть загадкой. Физики поняли, почему в баллоне с разреженным газом, через который проходит электрический ток, возникают невидимые лучи. Они разгадали их происхождение, их природу.

Лучи Рентгена возникают тогда, когда в стеклянную стенку баллона ударяется поток электронов, с огромной скоростью мчащихся сквозь разреженный газ.

Когда-то Герц и Крукс спорили о том, что такое электрический ток, проходящий в разреженном газе: колебания ли это, волны или материальные частицы, заряженные электричеством? Оказалось, доля истины была в предположении обоих. Современные физики полагают, что электрический ток — это и то и другое сразу: и частицы, летящие с огромной скоростью, и особого рода колебания, волны. То же можно сказать и о лучах икс. В тот самый момент, когда несущиеся сквозь газ электроны натыкаются на стеклянную стенку, в баллоне возникают новые волны-частицы. Они разбегаются по всем направлениям от стеклянной стенки, о которую ударились электроны. Волны-частицы, испускаемые стенкой, — это и есть лучи икс, открытые профессором Рентгеном.

И не только стекло, поставленное на пути электронов, испускает невидимые лучи. Сам Рентген, производя свои опыты, заметил, что если на пути электронов поставить металл, то и металл начнет испускать лучи — и даже еще сильнее, чем стекло. Позже было установлено, что, с каким бы твердым телом не столкнулись быстрые электроны, оно делается источником рентгеновских лучей.

В современных рентгеновских трубках лучи икс получаются от удара электронов об антикатод — массивный кусок тугоплавкого металла (железа или вольфрама). В трубку подают высокое электрическое напряжение. Чем выше напряжение, тем быстрее движутся электроны, тем энергичнее оказываются лучи Рентгена, испускаемые антикатодом, и тем легче проходят эти лучи сквозь тела, непроницаемые для видимого света.


Еще от автора Матвей Петрович Бронштейн
Атомы и электроны

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Занимательная квантовая физика

Книга известного советского физика Матвея Бронштейна «Занимательная квантовая физика» познакомит читателя с миром крошечных, невидимых для простого глаза частиц — атомов и электронов. А также расскажет об ученых: Вильгельме Рентгене, Анри Беккереле, Пьере и Марии Кюри и многих других, обнаруживших и изучавших природу излучения. Как Дмитрий Менделеев предсказывал свойства еще не открытых элементов? Для чего раньше использовали радий? Что такое альфа-частицы? Почему на некоторых минералах геологи обнаруживают странные ореолы? Обо всем этом читатель узнает из книги. Для среднего школьного возраста.


Солнечное вещество и другие повести, а также Жизнь и судьба Матвея Бронштейна и Лидии Чуковской

Матвей Бронштейн (1906–1938) за свою короткую жизнь успел войти в историю и фундаментальной физики, и научно-художественной литературы. Его приключенческие повести о научных открытиях и изобретениях стали образцом нового литературного жанра. Он рассказал о веществе, обнаруженном сначала на Солнце и лишь много лет спустя на Земле. О случайном открытии невидимых X-лучей, принесших Рентгену самую первую Нобелевскую премию по физике, а человечеству – прибор, позволяющий видеть насквозь. И успел рассказать об изобретении радио, без которого не было бы ни телевидения, ни интернета.


Рекомендуем почитать
Ядерная зима. Что будет, когда нас не будет?

6 и 9 августа 1945 года японские города Хиросима и Нагасаки озарились светом тысячи солнц. Две ядерные бомбы, сброшенные на эти города, буквально стерли все живое на сотни километров вокруг этих городов. Именно тогда люди впервые задумались о том, что будет, если кто-то бросит бомбу в ответ. Что случится в результате глобального ядерного конфликта? Что произойдет с людьми, с планетой, останется ли жизнь на земле? А если останется, то что это будет за жизнь? Об истории создания ядерной бомбы, механизме действия ядерного оружия и ядерной зиме рассказывают лучшие физики мира.


Законы движения

Книга М. Ивановского «Законы движения» знакомит читателей с основными законами механики и с историей их открытия. Наряду с этим в ней рассказано о жизни и деятельности великих ученых Аристотеля, Галилея и Ньютона.Книга рассчитана на школьников среднего возраста.Ввиду скоропостижной смерти автора рукопись осталась незаконченной. Работа по подготовке ее к печати была проведена Б. И. Смагиным. При этом IV, V, VI и VII главы подверглись существенной переработке. Материал этих глав исправлен и дополнен новыми разделами.


О движении

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Золотое правило

В небольшой по объему книге «Золотое правило» М. Ивановский в занимательней форме сообщает читателю интересные сведения из истории, а также из жизни великого ученого древности — Архимеда.Наряду с историческими сведениями автор, воспользовавшись удачным литературным приемом, знакомит школьников с устройством и действием целого ряда простых механизмов — ворота, лебедки, полиспаста, дифференциального ворота и др. И хотя некоторые из этих механизмов не изучаются в школьном курсе физики, они в описании автора становятся вполне понятными для учащихся VI–VII классов.М.



Неизвестный алмаз. «Артефакты» технологии

В книге описываются результаты экспериментов по изучению оригинального квантово-волнового метода механического воздействия на кристаллы алмаза. Проведенные эксперименты открывают новые свойства и особенности этих кристаллов, находящихся в сильнонеравновесных условиях обработки. Показана принципиальная возможность возникновения необратимых сильнонеравновесных явлений в кристаллах алмаза при формировании в их объеме волновых потоков с винтовым возмущением волнового фронта. Взаимодействие этих волновых потоков в объеме алмаза приводит как к изменению дефектно-примесной структуры алмаза, снятию внутренних напряжений, так и к формированию морфологического рельефа поверхности кристалла без непосредственного касания всей его поверхности инструментом.