Солнечное вещество - [12]

Шрифт
Интервал

И гелий тоже ленив, он тоже не застрянет в раскаленных опилках. Вместе с аргоном он проскочит через обе батареи.

Как же отделить гелий от аргона? Как из смеси аргона с гелием добыть чистый гелий?

Рамзай долго ломал себе голову над этой задачей. Если бы можно было найти такое вещество, которое соединяется с аргоном, но не с гелием, — тогда задача была бы решена. Аргон застрял бы в этом веществе, как раньше застряли кислород и азот, и в газометре остался бы чистый гелий.

Но ведь в том-то и беда, что такого вещества в природе нет. Ни одно вещество не соединяется с ленивым газом аргоном.

Значит, аргон нельзя удалить тем же способом, каким были удалены кислород и азот. Задача казалась неразрешимой.


КЛЮЧ К РЕШЕНИЮ


Только после долгого раздумья Рамзай понял, что ему делать. Он вспомнил, как поступают химики, когда из смеси спирта с водой нужно добыть чистый спирт.

Спирт испаряется быстрее, чем вода. Этим-то и пользуются химики. Они нагревают смесь. Первые порции пара, поднимающиеся над

жидкостью, — это пары чистого спирта. Следующие порции — это смесь паров воды и паров спирта. А последним идет уже чистый водяной пар.

С первыми порциями пара дела немного. Стоит охладить этот пар, и он сразу превратится в чистый спирт.

А вот со следующими порциями, со смесью паров, возни больше. Их тоже собирают, тоже охлаждают, но в холодильник теперь уже течет не чистый спирт, а смесь воды и спирта. Эту смесь снова пускают в перегонный аппарат, снова нагревают, и вот опять поднимаются пары — сперва пары чистого спирта, а за ними и смесь, которую еще раз пускают в перегонку. И вся эта история повторяется до тех пор, пока не удается окончательно разлучить воду со спиртом.

Этот хлопотливый, но верный способ отделения одной жидкости от другой называется у химиков дробной перегонкой.

На этот раз Рамзай решил отделить дробной перегонкой гелий от аргона.

Но разве это возможно? Ведь дробной перегонкой химики разлучают жидкости, а гелий и аргон — газы.

Рамзай доказал, что это возможно. Нужно только превратить воздух в жидкость, а потом дать ему испариться. При перегонке составные части воздуха будут уходить из него не все сразу, а по очереди: сперва уйдет та, которая легче всего испаряется, а за ней и другие, которые испаряются медленнее.

Так дробная перегонка поможет отделить гелий от аргона.

Значит, остановка только за тем, чтобы сделать воздух жидким.

Для этого нужен очень большой холод: при 192 градусах ниже нуля воздух превращается в жидкость.

Нигде на Земле такого мороза не бывает. Но люди научились создавать его сами. Мороз в -192 градуса производят особые холодильные машины.

Почти в каждой хорошо оборудованной лаборатории вы найдете в наше время холодильную машину. Но в те времена, когда Рамзай занимался поисками гелия в воздухе, в целом мире существовали всего лишь три-четыре лаборатории, в которых сложными и громоздкими способами добывался жидкий воздух.

Рамзай был в большом затруднении. Для задуманной работы требовалось много жидкого воздуха. А он был редкостью.

Но тут Рамзаю неожиданно повезло. На его счастье, как раз в ту пору, когда жидкий воздух был ему необходим, а достать его было негде, — в эти самые дни, как будто нарочно для него, изобрели холодильную машину, такую простую и удобную, что ее можно было завести в каждой лаборатории.

Два человека изобрели ее в одно и то же время. Они жили в разных странах и работали порознь. Но изобретенные ими машины устроены совершенно одинаково.


ИЗГОТОВЛЕНИЕ ХОЛОДА


Если воздух сильно сжать, а затем дать ему быстро расшириться, он сразу охладится. На этом физическом законе и основано устройство холодильной машины (рис. 10).

В машину подают воздух. Мощные насосы сжимают его в узкой трубе, а затем выгоняют в просторную камеру. Тут он сразу расширяется и становится холоднее. Этим охлажденным воздухом охлаждают новую порцию сжатого воздуха, поступившую в машину. А расширившись, она становится еще холоднее. Второй порцией охлаждают третью, третьей четвертую, и наконец в машине наступает мороз в -192 градуса. Воздух так охлажден, что превратился в жидкость.

Теперь вся задача в том, чтоб он остался жидкостью, а не испарился вновь. Нужно защитить его от наружного тепла. Недостаточно держать его в обыкновенном леднике. Для него и ледник — баня. Он будет кипеть на льду как на горячих угольях, кипеть самым настоящим образом — булькать, шипеть, плеваться и уходить паром в воздух. Выставьте его на пятидесяти-, шестидесяти-, восьмидесятиградусный мороз, отвезите его на Северный полюс — он и там выкипит в одну минуту. Как же держать его в лаборатории, в комнатном тепле?

Есть такой стеклянный сосуд с двойными посеребренными стенками (рис. 11). Между внутренней и наружной стенкой — пустота: оттуда выкачан воздух.

Рис. 10. Машина для превращения воздуха в жидкость. Сжатый воздух втекает в машину по внутренней трубке, обозначенной на рисунке штрихом. Попав в камеру, воздух расширяется, делается холоднее и возвращается по наружной трубе. Поднимаясь по наружной трубе, он охлаждает новую порцию сжатого воздуха, которая в это время опускается в камеру по внутренней трубке. В конце концов воздух превращается в жидкость и каплями стекает в камеру. Открыв кран, можно выпустить из машины жидкий воздух, как кипяток из самовара


Еще от автора Матвей Петрович Бронштейн
Атомы и электроны

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Занимательная квантовая физика

Книга известного советского физика Матвея Бронштейна «Занимательная квантовая физика» познакомит читателя с миром крошечных, невидимых для простого глаза частиц — атомов и электронов. А также расскажет об ученых: Вильгельме Рентгене, Анри Беккереле, Пьере и Марии Кюри и многих других, обнаруживших и изучавших природу излучения. Как Дмитрий Менделеев предсказывал свойства еще не открытых элементов? Для чего раньше использовали радий? Что такое альфа-частицы? Почему на некоторых минералах геологи обнаруживают странные ореолы? Обо всем этом читатель узнает из книги. Для среднего школьного возраста.


Солнечное вещество и другие повести, а также Жизнь и судьба Матвея Бронштейна и Лидии Чуковской

Матвей Бронштейн (1906–1938) за свою короткую жизнь успел войти в историю и фундаментальной физики, и научно-художественной литературы. Его приключенческие повести о научных открытиях и изобретениях стали образцом нового литературного жанра. Он рассказал о веществе, обнаруженном сначала на Солнце и лишь много лет спустя на Земле. О случайном открытии невидимых X-лучей, принесших Рентгену самую первую Нобелевскую премию по физике, а человечеству – прибор, позволяющий видеть насквозь. И успел рассказать об изобретении радио, без которого не было бы ни телевидения, ни интернета.


Рекомендуем почитать
Популярная астрофизика. Философия космоса и пятое измерение

Александр Дементьев – журналист (работал в таких изданиях, как РБК, «Ведомости», Лента.ру), закончил МПГУ (бывш. МГПИ им. Ленина) по специальности общая и экспериментальная физика. Автор самого крупного научно-популярного канала «Популярная наука» на «Яндекс. Дзен». Перед вами – уникальная книга, которая даст возможность по-новому взглянуть на космос. Человечество стоит на пороге больших открытий за пределами нашей планеты. И они кардинально изменят жизнь людей! Из книги вы узнаете: • Что ждет Землю и Солнце в будущем.


Шесть невозможностей. Загадки квантового мира

Квантовая физика – очень странная штука. Она утверждает, что одна частица может находиться в двух местах одновременно. Больше того, частица – это еще и волна, и все происходящее в квантовом мире может быть представлено как взаимодействие волн – или частиц, как вам больше нравится. Все это было понятно уже к концу 1920-х годов. За это время было испробовано немало разных более или менее убедительных интерпретаций. Известный популяризатор науки Джон Гриббин отправляет нас в захватывающее путешествие по «большой шестерке» таких объяснений, от копенгагенской интерпретации до идеи множественности миров. Все эти варианты в разной степени безумны, но в квантовом мире безумность не равносильна ошибочности, и быть безумнее других не обязательно значит быть более неверным.


Загадка падающей кошки и фундаментальная физика

Как падающим кошкам всегда удается приземлиться на четыре лапы? Удивительно, сколько времени потребовалось ученым, чтобы ответить на этот вопрос! История изучения этой кошачьей способности почти ровесница самой физики — первая исследовательская работа на тему падающей кошки была опубликована в 1700 г. французом Антуаном Параном, но даже сегодня ученые продолжают находить в ней спорные моменты. В своей увлекательной и остроумной книге физик и заядлый кошатник Грегори Гбур показывает, как попытки понять механику падения кошек помогли разобраться в самых разных задачах в математике, физике, физиологии, неврологии и космической биологии, способствовали развитию фотографии и кинематографа и оказали влияние даже на робототехнику. Поиск ответа на загадку падающей кошки погружает читателей в увлекательный мир науки, из которого они узнают решение головоломки, но также обнаружат, что феномен кошачьего выверта по-прежнему вызывает горячие споры ученых. Автор убежден, что чем больше мы исследуем поведение этих животных, тем больше сюрпризов они нам преподносят.


Космос. От Солнца до границ неизвестного

Что случилось с Венерой? Как Сатурн стал властелином колец? Где искать Девятую планету? Почему мы не видим облако Оорта? Что мы знаем о самой большой звезде? Как живут звезды после смерти? Как галактики воруют друг у друга? Как сфотографировать черную дыру? Какая галактика самая большая? Эта книга отправит вас в космическое путешествием вместе с экспертами журнала New Scientist. Стартуя от Солнца, мы посетим планеты земной группы, газовые гиганты и их спутники, пересечем облако Оорта и выйдем за границы Млечного Пути.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.