Сочинения в 2-х томах. Том 1 - [22]

Шрифт
Интервал

. Опять-таки, мы покажем, что и они правильно понимали величайший максимум и что смысл у них всех один.

ГЛАВА 13 ОБ ИЗМЕНЕНИЯХ, ПРЕТЕРПЕВАЕМЫХ МАКСИМАЛЬНОЙ И БЕСКОНЕЧНОЙ ЛИНИЕЙ

Итак, я утверждаю, что если бы существовала бесконечная линия, она была бы прямой, она была бы треугольником, она была бы кругом, и она была бы шаром; равным образом, если бы существовал бесконечный шар, он был бы кругом, треугольником и линией; и то же самое надо говорить о бесконечном треугольнике и бесконечном круге.

Во-первых, что бесконечная линия будет прямой, очевидно: диаметр круга есть прямая линия, а окружность — кривая линия, большая диаметра; если эта кривая тем меньше в своей кривизне, чем большего круга окружностью она является, то окружность максимального круга, больше которого не может быть, минимально крива, а стало быть, максимально пряма. Минимум совпадает таким образом с максимумом. Даже и на глаз видно, что максимальная линия с необходимостью максимально пряма и минимально крива. Здесь не может оставаться ни тени сомнения, когда мы рас смотрим на фигуре сбоку, что дуга CD большего круга больше отступает от кривизны, чем дуга EF меньшего круга, а та больше отходит от кривизны, чем дуга GH еще меньшего круга, почему прямая линия AB будет дугой максимального круга, который уже не может увеличиться. Так мы видим, что максимальная и бесконечная линия по необходимости совершенно прямая и кривизна ей не противоположна; мало того, кривизна в этой максимальной линии есть прямизна. Это первое, что требовалось доказать.

Во-вторых, как сказано, бесконечная линия есть максимальный треугольник, круг и шар. Для доказательства этого надо рассмотреть на конечных линиях, что заключено в возможности конечной линии; поскольку все, чем конечная линия является в возможности, бесконечная линия есть в действительности, мы сможем увидеть искомое еще яснее.

Мы знаем прежде всего, что конечная линия по своей длине может быть длиннее и прямее; а уже доказано, что максимальная линия — самая длинная и прямая. Потом, если линия AB будет обведена вокруг неподвижной точки А, пока не придет в С, возникнет треугольник. Если вращение будет совершаться, пока В по придет в свое начальное положение, возникнет круг.

Опять-таки, если В будет обведено вокруг неподвижного А до точки, противоположной своему начальному положению, то есть до D, то из линий AB и AD образуется одна непрерывная линия и будет описан полукруг. Наконец, если этот полукруг будет обведен вокруг неподвижного диаметра BD, то получится шар. И этот шар — последняя возможность линии, целиком переходящей в нем в действительность, потому что шар уже не заключает в себе возможности никакой последующей фигуры.

Поскольку, таким образом, в возможности конечной линии заключены все эти фигуры, а бесконечная линия есть действительным образом все то, возможность чего представляет конечная, то, следовательно, бесконечная линия есть и треугольник, и круг, и шар, что и следовало доказать.

Так как ты, наверное, захочешь яснее убедиться, что бесконечное есть действительность всего, что заключено в возможности конечного, дам тебе совершенно удостовериться в этом.

ГЛАВА 14 О ТОМ, ЧТО БЕСКОНЕЧНАЯ ЛИНИЯ ЕСТЬ ТРЕУГОЛЬНИК

Воображение, неспособное выйти за пределы чувственных вещей, не улавливает, что линия может быть треугольником, потому что количественное различие обоих несоизмеримо; но для разума это нетрудно.

В самом деле, уже доказано, что максимальным и бесконечным может быть только одно. Ясно также, раз всякие две стороны любого треугольника в сумме не могут быть меньше третьей, что если у треугольника одна из сторон бесконечна, две другие будут не меньше. Потом, поскольку любая часть бесконечности бесконечна, у треугольника с одной бесконечной стороной другие тоже обязательно будут бесконечными. Но нескольких бесконечностей не бывает, и за пределами воображения ты трансцендентно понимаешь, что бесконечный треугольник не может состоять из нескольких линий, хоть этот максимальный, не составной и простейший треугольник есть истиннейший треугольник, обязательно имеющий три линии, и, значит, единственная бесконечная линия с необходимостью оказывается в нем тремя, а три — одной, простейшей. То же в отношении углов: в нем будет только один бесконечный угол, и этот угол — три угла, а три угла — один. Не будет этот максимальный треугольник и состоять из сторон и углов, но бесконечная линия и угол в нем — одно и то же, так что линия есть и угол, раз весь треугольник — линия.

Понять это тебе поможет еще восхождение от количественного треугольника к не-количественному (nоnquantum). Всякий количественный треугольник, как известно, имеет три угла, равные двум прямым, и чем больше один угол, тем меньше другие. Хотя каждый угол треугольника может увеличиваться только до двух прямых исключительно, а не максимально, в соответствии с нашим первым принципом, однако допустим, что он увеличивается максимально до двух прямых включительно, оставаясь при этом треугольником. Тогда, окажется, что у треугольника один угол, который есть три, и три образуют один. Точно так же ты сможешь убедиться, что треугольник есть линия. Любые две стороны количественного треугольника в сумме настолько длиннее третьей, насколько образуемый ими угол меньше двух прямых; например, поскольку угол ВАС много меньше двух прямых, линии BA и АC в сумме много длиннее ВС. Значит, чем больше этот угол, например угол ВDС, тем меньше линии BD и DC превышают линию ВС и тем меньше поверхность.


Еще от автора Николай Кузанский
Об учёном незнании (De docta ignorantia)

Николай Кузанский, Николай Кузанец, Кузанус, настоящее имя Николай Кребс (нем. Nicolaus Krebs, лат. Nicolaus Cusanus; 1401, Куза на Мозеле — 11 августа 1464, Тоди, Умбрия) — крупнейший немецкий мыслитель XV в., кардинал, философ, теолог, учёный, математик, церковно-политический деятель."Собираясь говорить о высшем искусстве незнания, я обязательно должен разобрать природу самой по себе максимальности. Максимумом я называю то, больше чего ничего не может быть. Но такое преизобилие свойственно единому. Поэтому максимальность совпадает с единством, которое есть и бытие."Перевод и примечания В.


Сочинения в 2-х томах. Том 2

Во второй том Сочинений вошли его главные произведения 1449—1464 гг. «Апология ученого незнания», «О видении бога», «Берилл», «О неином», «Игра в шар», «Охота за мудростью» и др. На почве античной и средневековой традиции здесь развертывается диалектика восхождения к первоначалу, учение о единстве мира, о человеке как микрокосме и о цели жизни.


О неином

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
Вечная утопия

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Конъюнктуры Земли и времени. Геополитические и хронополитические интеллектуальные расследования

В сборнике статей отечественного филолога и политолога Вадима Цымбурского представлены «интеллектуальные расследования» ученого по отдельным вопросам российской геополитики и хронополитики; несколько развернутых рецензий на современные труды в этих областях знания; цикл работ, посвященных понятию суверенитета в российском и мировом политическом дискурсе; набросок собственной теории рационального поведения и очерк исторической поэтики в контексте филологической теории драмы. Сборник открывает обширное авторское введение: в нем ученый подводит итог всей своей деятельности в сфере теоретической политологии, которой Вадим Цымбурский, один из виднейших отечественных филологов-классиков, крупнейший в России специалист по гомеровскому эпосу, посвятил последние двадцать лет своей жизни и в которой он оставил свой яркий след.


Нелинейное будущее

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Происхождение древнегреческой мысли

Ж.-П. Вернан - известный антиковед, в своей работе пытается доступно изложить происхождение греческой мысли и показать ее особенности. Основная мысль Вернана заключается в следующем. Существует тесная связь между нововведениями, внесенными первыми ионийскими философами VI в. до н. э. в само мышление, а именно: реалистический характер идеи космического порядка, основанный на законе уравновешенного соотношения между конститутивными элементами мира, и геометрическая интерпретация реальности,— с одной стороны, и изменениями в общественной жизни, политических отношениях и духовных структурах, которые повлекла за собой организация полиса,— с другой.


Единство и одиночество: Курс политической философии Нового времени

Новая книга политического философа Артемия Магуна, доцента Факультета Свободных Искусств и Наук СПБГУ, доцента Европейского университета в С. — Петербурге, — одновременно учебник по политической философии Нового времени и трактат о сущности политического. В книге рассказывается о наиболее влиятельных системах политической мысли; фактически читатель вводится в богатейшую традицию дискуссий об объединении и разъединении людей, которая до сих пор, в силу понятных причин, остается мало освоенной в российской культуре и политике.


Воспоминания о К Марксе и Ф Энгельсе (Часть 2)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.