События и люди - [96]
Автор ищет решение этого уравнения в виде
что в результате подстановки в (12) приводит к уравнению для g
Далее А. А. Власов (см. (4) в [1]) делит обе части этого уравнения на (kv — ω), затем интегрирует обе части по dv и приходит таким образом к основному для него «дисперсионному уравнению» (см. (5) в [1])
Из этого уравнения автор считает возможным определить связь между k и ω. Нахождению этой связи в различных случаях и посвящена большая часть работы [1]. Между тем уравнение (14) бессмысленно, поскольку фигурирующий в нем интеграл расходится при kv — ω = 0.
А. А. Власов пытается обойти эту трудность просто тем, что берет главное значение интеграла, на что, разумеется, нет абсолютно никаких оснований, поскольку расходящийся интеграл можно «взять» также бесчисленным числом других способов. Как известно, если в физической проблеме встречается выражение, не имеющее математического смысла (например, расходящийся интеграл), то это означает, что либо в исходных уравнениях задачи не учтен какой-либо физический эффект, приводящий при его учете к разумным результатам, либо же при решении уравнений допущена математическая ошибка. В случае А. А. Власова дело обстоит именно последним образом, так как уравнение (14) вовсе не вытекает из интегрального уравнения (13). Из этого последнего уравнения вообще не получается какой-либо связи между ω и k таким образом, никакого «дисперсионного уравнения» не существует.
Ошибка А. А. Власова состоит в том, что, как мы указывали, он делит обе части (13) на kv — ω и, таким образом, принимает равенство (см. (4) в [1])
3. В действительности из (13) вытекает не (15), а уравнение, отличающееся от (10) добавленной к правой его части некоторой произвольной функцией от ω и v, равной нулю при к kv ≠ ω и отличной от нуля при kv = 0. Наличие содержащей известный произвол функции и должно обеспечить математическую непротиворечивость решения[46]. Для получения этого решения можно, например, применить к (13) преобразование Фурье. В результате для функции
мы получаем
где
направление k принято за ось x и φ(q>y , q>z) — произвольная функция. Мы видим, что решение для G(q) содержит произвольную функцию φ(q>y , q>z) от двух аргументов. Такой же произвол содержится в сопряженной по Фурье с G(q) исходной функции g(v) (представляющей собой функцию несобственную). Кроме функции G(q) в (17) остаются произвольными все четыре параметра k>x , k>y , k>z , ω, и никакой связи между ними не существует.
Кроме того, здесь нужно, конечно, иметь в виду все сказанное нами относительно неприменимости метода «самосогласованного поля». Тем не менее вопрос о дисперсионном уравнении заслуживает отдельного разбора, так как в работе 1938 г. [8] А. А. Власов применял уравнение (12) к электронной плазме. В этом же случае, поскольку рассматриваются кулоновские силы, применение самосогласованного поля и, следовательно, уравнения (eq12) допустимо. Однако исследование вопроса автор опять проводит на основе несуществующего «дисперсионного уравнения» (14), вследствие чего большинство результатов этой работы также неверно. Мы не будем останавливаться на этом вопросе, так как исследование колебаний электронной плазмы проведено в работе Л. Ландау «О колебаниях электронной плазмы» [6]. В этой работе указано, как нужно ставить вопрос о решениях уравнения (12), на чем останавливаться здесь мы также не будем.
Поскольку все содержание работ А. А. Власова [1–5], относящееся к исследованию нестационарного случая, сводится к анализу несуществующего «дисперсионного уравнения», ясно, что его выводы, касающиеся «вибрационных свойств» и «недиссипативных потоков и их спонтанного возникновения в газе», появляются лишь в результате указанных грубых ошибок.
Таким образом, сделанное в начале статьи утверждение об отсутствии в разобранных работах А. А. Власова [1–5] каких-либо положительных результатов представляется нам доказанным.
1. Власов А. А. // J. Phys. 1946. 9. P. 26.
2. Власов А. А. // J. Phys. 1946. 9. P. 190.
3. Власов А. А. // Известия АН СССР. Сер. физика. 1944. 8, P. 248.
4. Власов А. А. // Ученые записки МГУ. 1945. № 77. С. 3.
5. Власов А. А. // ЖЭТФ. 1945. 15. С. 291.
6. Ландау Л. Д. // ЖЭТФ. 1946. 16. С. 574; Journ. of Phys. 1946. P. 25.
К обобщенной теории плазмы и теории твердого тела[47]
Профессор А. А. Власов
Вестник Московского университета. Физика. Астрономия. 1946. № 3–4. Сокращенный текст
Коллективные взаимодействия, далекие пространственно-временные связи, процессы, не укладывающиеся в обычные рамки задачи Коши. (Ответ В. Гинзбургу, Л. Ландау, М. Леонтовичу, В. Фоку[48].)
1. Новое уравнение
2. Проблема обоснования
3. Особенности метода «самосогласованного поля»: а) отличие от «обычных» методов, б) непосредственная связь между «микро» и «макро»
4. Неборновский кристалл: а) низкие температуры, б) высокие температуры, в) промежуточные температуры
5. Задача Коши, ее решения, особенности и следствия
6. Теория нового типа временных физических процессов, не укладывающихся в рамки задачи Коши
Наиболее полная на сегодняшний день биография знаменитого генерального секретаря Коминтерна, деятеля болгарского и международного коммунистического и рабочего движения, национального лидера послевоенной Болгарии Георгия Димитрова (1882–1949). Для воссоздания жизненного пути героя автор использовал обширный корпус документальных источников, научных исследований и ранее недоступных архивных материалов, в том числе его не публиковавшийся на русском языке дневник (1933–1949). В биографии Димитрова оставили глубокий и драматичный отпечаток крупнейшие события и явления первой половины XX века — войны, революции, массовые народные движения, победа социализма в СССР, борьба с фашизмом, новаторские социальные проекты, раздел мира на сферы влияния.
В первой части книги «Дедюхино» рассказывается о жителях Никольщины, одного из районов исчезнувшего в середине XX века рабочего поселка. Адресована широкому кругу читателей.
Книга «Школа штурмующих небо» — это документальный очерк о пятидесятилетнем пути Ейского военного училища. Ее страницы прежде всего посвящены младшему поколению воинов-авиаторов и всем тем, кто любит небо. В ней рассказывается о том, как военные летные кадры совершенствуют свое мастерство, готовятся с достоинством и честью защищать любимую Родину, завоевания Великого Октября.
Автор книги Герой Советского Союза, заслуженный мастер спорта СССР Евгений Николаевич Андреев рассказывает о рабочих буднях испытателей парашютов. Вместе с автором читатель «совершит» немало разнообразных прыжков с парашютом, не раз окажется в сложных ситуациях.
Из этой книги вы узнаете о главных событиях из жизни К. Э. Циолковского, о его юности и начале научной работы, о его преподавании в школе.
Со времен Макиавелли образ политика в сознании общества ассоциируется с лицемерием, жестокостью и беспринципностью в борьбе за власть и ее сохранение. Пример Вацлава Гавела доказывает, что авторитетным политиком способен быть человек иного типа – интеллектуал, проповедующий нравственное сопротивление злу и «жизнь в правде». Писатель и драматург, Гавел стал лидером бескровной революции, последним президентом Чехословакии и первым независимой Чехии. Следуя формуле своего героя «Нет жизни вне истории и истории вне жизни», Иван Беляев написал биографию Гавела, каждое событие в жизни которого вплетено в культурный и политический контекст всего XX столетия.