Скрытая реальность. Параллельные миры и глубинные законы космоса - [12]

Шрифт
Интервал

и додекаэдрального пространства Пуанкаре, также имеющие однородную кривизну; я не включил их сюда, поскольку их сложнее наглядно изобразить с помощью повседневных предметов. Они могут быть построены, если подходящим образом нарезать и скомпоновать уже знакомые пространства из нашего списка, так что табл. 2.1 в действительности даёт вполне представительную выборку. Однако все эти подробности второстепенны для нашего ключевого вывода: требование однородности космоса, отражённое в формулировке космологического принципа, существенным образом ограничивает набор возможных форм вселенной. Одни из этих форм имеют бесконечную пространственную протяжённость, другие — нет.>{9}

Таблица 2.1. Возможные варианты формы космического пространства, которые находятся в согласии с космологическим принципом — допущением о том, что любое положение во вселенной эквивалентно любому другому

ФормаКривизнаПротяжённость
СфераПоложительнаяКонечная
Поверхность столаНулевая («плоская»)Бесконечная
Экран компьютерной игрыНулевая («плоская»)Конечная
Ломтик чипсов «Принглс»ОтрицательнаяБесконечная

Наша Вселенная

Расширение пространства, обнаруженное математическим путём Леметром и Фридманом, применимо к любой вселенной, имеющей одну из вышеперечисленных форм. В случае положительной кривизны можно воспользоваться двумерной аналогией и представить себе, как растягивается поверхность воздушного шарика по мере того, как его надувают воздухом. Для нулевой кривизны подходит образ плоского резинового коврика, который равномерно тянут во всех направлениях. В случае отрицательной кривизны вообразите растягиваемую резиновую чипсину. Если галактики представить себе как равномерно разбросанные блёстки на любой из этих поверхностей, расширение пространства приведёт к тому, что отдельные блёстки-галактики будут отодвигаться друг от друга — в точности как в той картине разбегания галактик, которую наблюдал Хаббл в 1929 году.

Это убедительная космологическая заготовка, но для её полного завершения и определения надо выяснить, какая из описанных форм соответствует нашей Вселенной. Мы можем определить форму знакомых нам объектов — бублика, бейсбольного мяча, куска льда, — взяв их в руки и повертев так и сяк. Проблема в том, что сделать то же самое со вселенной мы не в состоянии, поэтому определять её форму мы вынуждены косвенными методами. Уравнения общей теории относительности подсказывают нам математическую стратегию. Они говорят, что кривизна пространства сводится к единственной наблюдаемой величине — к пространственной плотности материи (более точно — материи и энергии). Если материи много, тяготение заставляет пространство сворачиваться на себя, порождая сферическую форму. Если материи мало, пространство чувствует себя свободно и разворачивается подобно ломтику чипсов «Принглс». А если пространство содержит некое точно определённое количество материи, то его кривизна равна нулю.[4]

Уравнения общей теории относительности также приводят к точному численному критерию, разделяющему данные три возможности. Математические выкладки показывают, что «определённое количество материи» — так называемая критическая плотность, составляет на сегодняшний день примерно 2 × 10>−29 грамма на кубический сантиметр, что соответствует примерно шести атомам водорода в одном кубическом метре, или, в более привычных образах, — одной дождевой капле в объёме, равном объёму земного шара.[5] Если оглядеться вокруг, легко может показаться, что плотность вещества во вселенной превышает критическую, но такой вывод будет поспешным. При вычислении критической плотности исходят из того, что вещество равномерно распределено в пространстве. Поэтому надо представить, что атомы, из которых состоят Земля, Луна, Солнце и всё остальное, равномерно распределены по космосу. Тогда весь вопрос сводится к тому, будет ли каждый кубический метр весить больше или меньше шести атомов водорода.

В силу важности космологических следствий, связанных со средней плотностью материи во вселенной, астрономы в течение десятилетий пытались измерить её величину. Метод измерений, которым они пользовались, идейно прост. С помощью мощных телескопов астрономы тщательно обследовали большие области пространства и суммировали массы всех видимых звёзд, а также массу остального материала, наличие которого они могли предполагать, изучая движение звёзд и галактик. До недавнего времени все проведённые наблюдения указывали на то, что величина средней плотности не очень велика, примерно 27 процентов от критической плотности, что соответствует двум атомам водорода на кубический метр. В свою очередь, это означало бы, что вселенная имеет отрицательную кривизну.

Однако позже, в конце 90-х годов прошлого столетия, произошло нечто экстраординарное. На основе некоторых великолепных наблюдений, которые будут рассмотрены в главе 6, и их анализа астрономы осознали, что из подсчёта постоянно упускался некоторый существенный вклад: диффузная энергия, которая, по-видимому, равномерным образом распределена во всём пространстве. Эти данные потрясли всех. Энергия, наполняющая пространство? Звучит как космологическая постоянная, которую, как мы видели, восемьдесят лет назад ввёл Эйнштейн, и от которой, как хорошо известно, он позже сам отказался. Возродили ли современные наблюдения космологическую постоянную?


Еще от автора Брайан Грин
Ткань космоса. Пространство, время и текстура реальности

Брайан Грин — один из ведущих физиков современности, автор «Элегантной Вселенной» — приглашает нас в очередное удивительное путешествие вглубь мироздания, которое поможет нам взглянуть в совершенно ином ракурсе на окружающую нас действительность.В книге рассматриваются фундаментальные вопросы, касающиеся классической физики, квантовой механики и космологии. Что есть пространство? Почему время имеет направление? Возможно ли путешествие в прошлое? Какую роль играют симметрия и энтропия в эволюции космоса? Что скрывается за тёмной материей? Может ли Вселенная существовать без пространства и времени?Грин детально рассматривает картину мира Ньютона, идеи Маха, теорию относительности Эйнштейна и анализирует её противоречия с квантовой механикой.


До конца времен. Сознание, материя и поиски смысла в меняющейся Вселенной

Брайан Грин — крупный физик-теоретик и знаменитый популяризатор науки. Его книги помогли многим познакомиться с теорией струн и другими важнейшими идеями современной физики. «До конца времен» — попытка поиска места для человека в картине мира, которую описывает современная наука. Грин показывает, как в противоборстве двух великих сил — энтропии и эволюции — развертывается космос с его галактиками, звездами, планетами и, наконец, жизнью. Почему есть что-то, а не ничего? Как мириады движущихся частиц обретают способность чувствовать и мыслить? Как нам постичь смысл жизни в леденящей перспективе триллионов лет будущего, где любая мысль в итоге обречена на угасание? Готовые ответы у Грина есть не всегда, но научный контекст делает их поиск несравненно более интересным занятием.


Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории

Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы — Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мультивселенные — вот далеко не полный перечень обсуждаемых вопросов.Используя ясные аналогии, автор переводит сложные идеи современной физики и математики в образы, понятные всем и каждому.


Рекомендуем почитать
Животные защищаются

Комплект из 16 открыток знакомит читателя с отдельными животными, отличающимися наиболее типичными или оригинальными способами пассивной обороны. Некоторые из них включены в Красную книгу СССР как редкие виды, находящиеся под угрозой исчезновения и поэтому нуждающиеся в строгой охране. В их числе, например, белая чайка, богомол древесный, жук-бомбардир ребристый, бабочки-медведицы, ленточницы, пестрянки. Художник А. М. Семенцов-Огиевский.


Знание-сила, 2008 № 01 (967)

Ежемесячный научно-популярный и научно-художественный журнал.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2005 № 12 (942)

Ежемесячный научно-популярный и научно-художественный журнал.


Жанна д’Арк. Святая или грешница?

Странный вопрос, скажет читатель; Жанну давно простили и канонизировали, о ней написана масса книг — и благочестивых, и «конспирологических», где предполагают, что она не была сожжена и жила впоследствии под другим именем. Но «феномен Жанны д’Арк» остается непостижимым. Потрясающей силы духовный порыв, увлекший ее на воинский подвиг вопреки всем обычаям ее времени, связан с тем, что, собственно, и называется мистицизмом: это внецерковное общение с незримыми силами, превышающими человеческое разумение.


Лестница жизни

Как возникла жизнь? Откуда взялась ДНК? Почему мы умираем? В последние десятилетия ученые смогли пролить свет на эти и другие вопросы происхождения и организации жизни. Известный английский биохимик реконструирует историю всего живого, описывая лучшие изобретения эволюции, и рассказывает, как каждое из них, начиная с самой жизни и генов и заканчивая сознанием и смертью, преображало природу нашей планеты и даже саму планету.