Скорость мысли. Грандиозное путешествие сквозь мозг за 2,1 секунды - [17]

Шрифт
Интервал

Потому что на самом деле вопрос «Сколько нужно входных импульсов для активации нейрона?» крайне глубокий и сложный, ответ на него зависит от множества факторов. И это множество подробно говорит нам о том, как мозг использует импульсы, чтобы функционировать. Выделим из них три: баланс импульсов возбуждения и торможения, поступающих к нейрону, синхронность входных сигналов и те места, где они попадают на само дерево дендритов.

Зона Златовласки [54]

Легион входных импульсов несет опасность. Для рождения нового импульса достаточно нескольких сотен входящих импульсов, но они распределены по тысячам входных линий. Хуже того, количество входов возбуждения превосходит количество входов торможения по крайней мере в пять раз. Даже несколько дополнительных импульсов на этих тысячах входов могут привести к неконтролируемому лавинообразному разгону – импульсы, запускающие импульсы, запускающие импульсы, – что приведет к перегрузке и отключению мозга. Эпилепсия – одна из таких катастроф: мощные волны импульсов пробегают по коре головного мозга, и их так много, что каждый нейрон на принимающем конце волны немедленно достигает своей критической точки, каждый одновременно порождает импульс и запускает следующую волну.

Но такие сбои случаются редко, потому что мозг находится в своей «зоне Златовласки» – не слишком активной, но и не слишком заторможенной, в самый раз [55]. И остается в этой зоне, поддерживая идеальный баланс между возбуждением и торможением.

Этот процесс балансирования был открыт в ходе исследования довольно простого вопроса об интервалах между импульсами. В 1992 году Уильям Софтки и Кристоф Кох обнаружили, что что-то не так с импульсами, посылаемыми нейронами из первой зрительной области коры головного мозга [56], точно такими же нейронами, как те, в которых мы сейчас ожидаем формирования импульса. Просматривая сотни записей возбуждения отдельных нейронов, они заметили, что импульсы, исходящие от каждого нейрона, создавались с удивительно нерегулярными интервалами. За коротким интервалом между импульсами может следовать другой короткий интервал, средний, а иногда длинный. Или любое их сочетание. Фактически для некоторых нейронов порядок интервалов был близок к совершенно случайному. Если бы вы взяли записи их импульсов и перемешали в другом порядке, то не смогли бы восстановить исходную последовательность [57].

Будучи теоретиками, ученые сразу поняли, что здесь что-то неладно. Даже лучшие модели генерации импульсов не дают возможности нейронам делать это со случайными интервалами. Независимо от того, насколько неравномерно импульсы будут поступать на вход этих моделей, импульсы, которые они генерируют по накоплении критического потенциала, будут расположены равномерно, а интервалы между ними получаются гораздо более регулярными, чем регистрировали в реальной коре головного мозга Софтки и Кох. Чтобы понять, почему так происходит, подумайте о количестве импульсов, приходящих на нейрон. Несмотря на то что каждый из отдельных входов получает нерегулярные сигналы, таких входов тысячи. Суммируя их, чтобы получить общее количество, мы обнаруживаем, что усредненная сумма оказывается относительно постоянной. Так, если модели нейрона требуется, скажем, 175 входящих импульсов для создания одного исходящего, то в общей сложности 175 импульсов, поступающих с интервалами, соответствующими закону случайного распрямления, будут накапливаться через равные интервалы, делая таким образом генерацию нового импульса регулярной, как работа часового механизма (рис. 3.3).


Рисунок 3.3. Как накопление случайных входящих сигналов приводит к возникновению равномерной последовательности. Представьте, что мы наблюдаем нейрон, получающий сигналы от четырех других нейронов. Каждая из последовательностей их импульсов изображена на рисунке: каждый штрих – это импульс, строка штрихов – импульсы от одного нейрона, отправленные тому, за которым мы наблюдаем. Каждая строка демонстрирует довольно случайный порядок сигналов: промежутки между импульсами то длинные, то короткие, без видимого порядка. А теперь представьте, что нашему нейрону требовалось бы всего семь входящих сигналов, чтобы вызвать его возбуждение. Мы подсчитываем импульсы, поступающие от четырех нейронов, и отмечаем их вертикальной линией каждый раз, когда получаем семь (серые линии). Итоговая последовательность выходных импульсов на нижней шкале является регулярной, поэтому накопление суммы из семи импульсов в четырех последовательностях случайных входящих – вполне обычное явление.


Согласно моделям, поступающие нерегулярно входящие сигналы превратятся в регулярные, равномерно расположенные исходящие. Но здесь кроется парадокс: если нейроны генерируют импульсы с регулярными интервалами, откуда тогда берутся случайные последовательности импульсов в коре головного мозга?

Теоретики любят парадоксы. Парадоксы в науке показывают пробелы в нашем понимании предмета, а разгадки парадоксов дают новое представление о том, как устроен мир. Поэтому, конечно же, парадокс нерегулярных импульсов привлек внимание большого количества теоретиков и вызвал множество предположений по поводу того, что могло бы стать причиной нерегулярности


Рекомендуем почитать
Советско-польские переговоры 1918–1921 гг. и их влияние на решение белорусского вопроса

В монографии проведено системное исследование истории советско-польских переговоров 1918–1921 гг., выделен отдельно белорусский вопрос. Определена периодизация переговорного процесса, выделены неофициальная и официальная части советско-польских переговоров. Изучены позиции советского и польского правительств в отношении к белорусским землям, определено влияние стран Антанты и США на переговорный процесс. Подробно рассмотрен вопрос формирования белорусского участка советско-польской границы и процесса ректификации.


Всё об искусственном интеллекте за 60 минут

Жить в современном мире, не взаимодействуя с искусственным интеллектом и не подвергаясь его воздействию, практически невозможно. Как так получилось? И что будет дальше? Меняют ли роботы наш мир к лучшему или создают еще больше проблем? Ответы на эти и другие вопросы, а также историю развития ИИ – от истоков и мотивации его зарождения до использования умных алгоритмов – вы найдете на страницах книги Питера Дж. Бентли, эксперта в области искусственного интеллекта и известного популяризатора науки. Для широкого круга читателей.


Научное мировоззрение изменит вашу жизнь. Почему мы изучаем Вселенную и как это помогает нам понять самих себя?

Мы живем в необычном и удивительном мире, в котором находимся далеко не на первом месте. Однако каждому из нас выпал уникальный шанс – родиться человеком разумным. Ученый, популяризатор науки и ведущий проекта «Умная Москва» Евгений Плисов последовательно делится увлекательными фактами из разных областей науки, чтобы показать, насколько интересен и прекрасен окружающий нас мир, почему нельзя терять любознательность и как научное мировоззрение может изменить вашу жизнь. В формате PDF A4 сохранен издательский макет книги.


Художественные открытки и их собирание

ОТ АВТОРОВ Почти три четверти века, прошло с тех пор, как появились первые русские художественные открытки и их собиратели. В настоящей брошюре авторы поставили своей задачей дать краткие сведения о появлении и распространении открыток, характеристику различных существующих типов открыток, ознакомить с существующими способами их систематизации, хранения и экспозиции. Большое значение авторы придают своей попытке осветить возможности использования открыток в пропагандистской и агитационно-массовой работе, в качестве наглядного учебного пособия, а также роль открыток в деле воспитания художественного вкуса широких трудящихся масс.


Антикитерский механизм: Самое загадочное изобретение Античности

Это уникальное устройство перевернуло наши представления об античном мире. Однако история Антикитерского механизма, названного так в честь греческого острова Антикитера, у берегов которого со дна моря были подняты его обломки, полна темных пятен. Многие десятилетия он хранился в Национальном археологическом музее Греции, не привлекая к себе особого внимания.В научном мире о его существовании знали, но даже ученые не могли поверить, что это не мистификация, и поразительный механизм, использовавшийся для расчета движения небесных тел, действительно дошел до нас из глубины веков.


Возвращение к языку. Наглый самоучитель райтера, журналиста и писателя

Пособие призвано развить в школьниках, студентах и начинающих журналистах умение создавать красивые, яркие и точные образы, оставаясь в рамках существующего русского языка, не вульгаризируя его англицизмами, жаргонными словами и разговорной речью низкого уровня. Задача, поставленная автором, довольно амбициозна: не только научить правильной письменной речи, но пробудить вдохновение к созданию таких текстов и дальнейшему совершенствованию. Адресована студентам факультетов журналистики и филологических факультетов, а также тем, кто стремится грамотно и образно излагать свои мысли на бумаге.